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Abstract

We consider a recently proposed hypothesis for the functional role of short-term
synaptic plasticity by Pfister et al., which shows the remarkable similarity of short-term
synaptic dynamics and the dynamics of a non-linear filter estimating the presynaptic
membrane potential from the spike train. We build on this theory by extending it
in various ways and making new predictions. The extensions allow the theory to be
formulated for a greater class of stochastic processes, namely multivariate diffusions
and Gaussian processes for the membrane potential dynamics and adaptive (uni- or
multivariate) point processes for the observed spike train. The new predictions are
that presynaptic adaptation is linked to short-term facilitation, and that certain types of
short-term depression are linked with a form of presynaptic adaptation which changes
the coupling parameter of the gain function.

The second part of the thesis deals with a statistical model for intracellular, in vivo
recordings of single-neuron activity which does not rely upon an input. Our model
generalizes linear-nonlinear-Poisson and generalized linear models by providing the
following: 1) a Gaussian process model for the presynaptic membrane potential, and
2) a spike shape kernel for the stereotypic components of the action potential. By
using suitable approximations and optimization algorithms, the model can be fitted to
in vivo data despite the model’s non-convexity. The model is shown to perform well
on different datasets from different animals and conditions.

Together, the two parts of the thesis provide all the necessary theoretical tools re-
quired to test the theory of short-term plasticity of Pfister et al. By fitting presynaptic
activity with the statistical model from the second part, and using the inference meth-
ods from the first part, one can derive predictions for the properties of downstream
synapses. These predictions can be tested by performing short-term plasticity experi-
ments in vitro.
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A synaptic fairy-tale
Drawings by Gino Caspari
Text by Simone Surace

Let me take you on a journey to a dark past, whose only written record can be found in The Holy
Book of Neuronal Dynamics.

Back then, many moons ago, a single neuron was inhabited by three kings. Their job was to listen
to dendritic input and discuss its information content. Each of them would craft a synaptic vesicle
and fill it with precious neurotransmitter, shown in green.



x

When the time was right, the kings would embark onto a long journey into a dark tunnel, which
was how the axon used to look like back then.

After a tedious march, the kings reached the synaptic cleft, a deep crevice that separated them from
the neighboring neuron kingdom. They flung their presents over and then hurried back home. The
kings had to be quick or else they would miss out on too much information from the voices of the
dendritic trees, which they instinctively knew were not to be ignored. Understandably, the kings
were growing tired of the stress and of having to do the same thing every day.
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The council of kings convened and came to the conclusion that this analog means of communication
was inefficient, unreliable and slow. They decided to liberate all kings from their burden by in-
troducing an action potential generator, shown as a small box with red button and corresponding
cable. The axon was filled up with conducting material, and from then on the kings had an easy
life and a lot of free time which they spent drinking and having fun. They could leisurely listen to
the sounds of the dendritic input and press the button when the need arose.

Meanwhile, a complex machine had been installed at the synaptic cleft. It was composed of thou-
sands of proteins, designed to infer what the kings were thinking and to deliver the right amount
of neurotransmitter. This story of how synapses became so complex has been told many times, but
people have always wondered whether this was all true...
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Introduction 1

The brain is a mystifying organ, evolved over hundreds of millions of years, studied only for
a few centuries. Its complexity, setting it well apart from even the most complex systems
understood so far, is both quantitative and qualitative. The aspects relating to quantity, i.e.
numbers, are easily appreciated – ten billion neurons, many more glial cells, a quadrillion
synapses. But there is more: each cell is complex system in itself, being of complicated
morphology, containing thousands of proteins, and employing many biochemical means of
communication.

The other, more qualitative aspects, are even more important. Brains are highly inter-
connected, come in a large variety, and are plastic and ever-changing. Due to evolutionary
pressures, brains of different animals are adapted to specific environments, extracting rel-
evant information from the senses, processing and transforming them into motor output.
Moreover, plasticity allows the brain to adapt further throughout the lifetime of the animal.

While there are now recording techniques that enable us to see hundreds of thousands
of nerve cells ‘in action’ while the animal is engaged in behavior, the vast amounts of data
that is thereby collected is very hard to analyze. A neuroscientist is therefore challenged to
find the right way to look at the data and to ask good questions.

This thesis has two parts (Chapters 2 and 3) which are connected by a common idea. The
brain is plastic in many different ways. One of the best-studied is synaptic plasticity, the
ability of synapses (i.e. chemical connections between neurons) to change their strength.
This plasticity occurs on many different time-scales. To enable the learning of complex
skills and languages, the synaptic and structural changes are likely to last for years. On
the other end of the spectrum is short-time plasticity, which occurs on the very short time-
scale of a few tens to hundreds of milliseconds. It is the idea that this short-term form of
synaptic plasticity is involved in learning and estimation, and the connection to uncertainty,
stochastic dynamics, and inference that inspires this thesis.

The theory proposed by Pfister et al. (2009), which is the starting point of this thesis,
looks upon the synapse as an estimator, decoder, or filter. This filter extracts information
about the presynaptic membrane time-course from the spike train arriving at the synapse.
In order to perform this task near-optimally, the synapse needs to incorporate some prior
knowledge about the presynaptic neuron’s statistics in its biophysical machinery – how the

1
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Figure 1.1: The paired-pulse ratio (PPR) is the ratio between the second and the first of two
subsequent postsynaptic potentials (PSP, shown here are idealized depictions of excitatory
PSPs, EPSPs) which occur as a response to a presynaptic stimulation. It varies as a function
of the inter-pulse interval ∆t. The depicted pair of pulses shows strong facilitation.

presynaptic membrane potential fluctuations look like and how spikes are generated. Chap-
ter 2 of this thesis investigates the stochastic modeling of the presynaptic quantities, while
Chapter 3 deals with the estimation or filtering task itself. The theory requires work on both
fronts, and this is what this thesis accomplishes.

In the remaining sections of the Introduction, we will set the stage for the coming chap-
ters by briefly reviewing the basic phenomenology of short-term plasticity and the functional
roles proposed for it, including the theory by Pfister et al. (2009) which was mentioned
above.

1.1 Phenomenology and Biophysics of STP
Chemical synapses constitute the predominant form of connection between nerve cells of
the vertebrate central nervous system. They transmit information from one cell to the next
by the release of neurotransmitter molecules from the presynaptic axon terminal, which can
be detected via specialized receptors on the postsynaptic side, leading to the opening of ion
channels on the postsynaptic membrane and a subsequent change in the postsynaptic local
membrane potential (Kandel et al., 2012). The efficacy of synapses, which is commonly
measured as the magnitude of change in postsynaptic membrane potential associated with a
single presynaptic action potential, varies widely, both over space and time, and the changes
over time can occur on various time-scales, reaching from 10 ms up to the life-time of the
animal. Those changes are referred to as synaptic plasticity, and short-term synaptic plasticity
(STP) is a summary term for the subset of temporary changes in synaptic efficacy which
occur on time-scales between 10 ms and a few seconds.

The first measurements of STP date back to the 1940s (see the review by Zucker and
Regehr (2002) for a comprehensive list of references) and study the changes of synaptic effi-
cacy as a function of the history of presynaptic activity. The simplest protocol of presynaptic
stimulation is the paired-pulse stimulation and the associated paired-pulse ratio (PPR), the
ratio between the amplitudes of the second and the first PSPs (see Fig. 1.1). The PPR usu-
ally varies as a function of the inter-pulse interval and is close to unity for large separations
of the two pulses. However, the PPR is a very simple readout of synaptic dynamics, and
does not tell the whole truth about them. More advanced protocols, such as pulse trains
with subsequent recovery pulse, or indeed randomized protocols (Costa et al., 2013), serve

2



1.2. The Markram-Tsodyks model of STP

to better constrain the various parameters of STP. Finally, pharmacological manipulations
are needed in order to isolate individual mechanisms.

Roughly speaking, there are two types of short-term plasticity, namely short-term facili-
tation and short-term depression. They correspond to distinct and specific biophysical mech-
anisms; facilitation occurs because of calcium influx into the presynaptic terminal following
an action potential, which increases the release probability of neurotransmitters. Depression
is caused mainly by the depletion of neurotransmitter vesicle pools. Both mechanisms are
usually at play, and their relative magnitude determines whether the synapse is dominated
by facilitation or depression. A facilitation-dominated synapse usually shows PPRs above
one, and responses to pulse trains show a monotonic increase of the amplitude of PSPs. A
recovery period of a few hundreds of milliseconds allows the calcium levels in the presynap-
tic terminal to decrease to the original level through calcium buffers or removal from the cell.
A depression-dominated synapses show the inverse, i.e. PPRs below one and in response to
pulse trains, steadily declining PSP amplitudes. There are synapses where facilitation and
depression have similar strength, leading to responses which are a mixture of the facilitation-
and depression-dominated ones, e.g. the PPR can have values greater and smaller than one
for different lengths of the inter-pulse interval.

1.2 The Markram-Tsodyks model of STP
Due to the great complexity of the biophysical apparatus behind STP, a simple phenomeno-
logical model is very useful. For an overview of different approaches, see Hennig (2013).
One of the better-known phenomenological models of STP is the Markram-Tsodyks (MT)
which was introduced in Tsodyks et al. (1998) and Markram et al. (1998), and its various
extensions. The simplest form of the MT model which is able to describe both facilitation
and depression is defined by the system of ordinary differential equations (ODE)

v̇(t) =
v0 − v(t)

τv
+ Jx(t)y(t)s(t),

ẋ(t) =
1− x(t)

τx
− x(t)y(t)s(t),

ẏ(t) =
Y − y(t)

τy
+ F (1− y(t))s(t).

(1.1)

Here, s(t) is the presynaptic spike train1, and the variable v(t) denotes the postsynaptic
membrane potential at time t, which has a resting value v0 and a membrane time-constant
τm. After a spike, it increases by an amount proportional to the vesicle occupancy or resource
variable x(t) times the release probability y(t). Those two variables, in turn, have their own
dynamics. Upon spike arrival, the resource variable is depleted by a fraction given by the
release probability y(t) and replenishes (decays back to unity) with a time-constant τx. The
release probability y(t), on the other hand, increases at a spike, and decays back to the
baseline Y with its own time-constant.

1The terms on the right hand side containing the spike train s(t), which is a sum of Dirac deltas, is under-
stood to be non-anticipating, meaning that e.g. the value of v at the time tsp of a spike changes from v(t−sp) to
v(t−sp) + Jx(t−sp)y(t

−
sp). In a slightly different version of the model, the spiking term in the second equation

reads −x(t−sp)y(t
+
sp) with the interpretation that the increase in release probability y(t) is mediated by Calcium

influx, which occurs before vesicle release

3
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Figure 1.2: An example of very short-term facilitation data by Dobrunz et al. (1997) (black)
is badly explained by the Markram-Tsodyks model of STP in Eq. (1.1) (red line), even when
the first data point is left out (red, dashed line). An extension of the normative theory of
STP (blue line, see Section 3.4 for details) is shown for comparison.

This simple three-variable model with seven parameters can account for many experi-
mentally observed forms of STP, but there are notable cases, e.g. the one of very short-term
facilitation by Dobrunz et al. (1997), where it fails (see Fig. 1.2). Motivated by the phe-
nomenology and accompanied by advances in biophysical understanding, there have been a
large number of extensions of the basic MT model, some of which are listed and explained
in the review by Hennig (2013). Nevertheless, in this thesis, the MT model in Eq. (1.1)
will serve as a base-line for comparison to the normative theory of short-term plasticity.

1.3 Functional Accounts of STP
People have wondered about the functional significance of STP for information processing
in the brain since the first observations of the phenomenon. While it is difficult to imagine
a synaptic apparatus which does not, in some way or another, express STP, the richness of
different STP types and the apparent non-randomness of its deployment suggest that there
might be functional benefits associated with it.

It is easily appreciated that STP makes the postsynaptic response dependent on the
history of presynaptic activity. This history-dependence occurs on a time-scale which co-
incides with time-scales relevant for many types of behaviors and processes in the envi-
ronment. It has been thought that low-frequency information is favored by a depressing
synapse, whereas high-frequency information can be communicated more efficiently with
a facilitating synapse. Computational studies investigating the information transfer across
dynamic synapses found a broadband response in the steady-state regime, independently of
the degree of facilitation or depression (Lindner et al., 2009). However, it has recently been
shown that dynamic synapses improve information transfer compared to static ones (Rot-
man et al., 2011), and that stochastic release of neurotransmitters has important effects on
information transmission (Rosenbaum et al., 2012). Information transfer was investigated
also in Scott (2005) and Scott et al. (2012). For more references on the temporal filtering
aspects of STP, see also Tsodyks and Wu (2013).
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The temporal filtering properties of dynamic synapses can lead to several functional con-
sequences, both for the neuron-to-neuron communication and network-wide computations.
First of all, automatic gain control (Abbott et al., 1997) can be achieved by a neuron which
receives synaptic inputs from synapses with similar degree of short-term depression, but dif-
ferent presynaptic activity patterns. Because of the low-pass filter properties of depression,
low firing rate inputs will have a stronger influence on the postsynaptic neuron than high
firing rate inputs. A single input spike train with temporal correlation between spikes is
decorrelated by short-term depression (Goldman et al., 2002). This occurs because depres-
sion is strongest for the short inter-spike intervals for which correlation is also strongest.

Dynamic synapses can have profound effects on network dynamics, e.g. stability (Tsodyks
et al., 1998; Katori et al., 2013; Torres and Kappen, 2013) and response to external inputs
(Barak and Tsodyks, 2007), and can subserve different functions related to network-wide
computations, e.g. working memory (Mongillo et al., 2008).

There have also been attempts to study STP from a Bayesian perspective, proposing it
as a way to achieve adaptation to internal changes in the brain(Stevenson et al., 2010), or
optimal inference (Pfister et al., 2009) (see below).

1.4 The ‘Know Thy Neighbour’ theory of STP
We now want to give a more detailed exposition of the normative theory of STP proposed
by Pfister et al. (2009) on which Chapter 2 is based. The main tenet of this theory, which we
will call ‘Know Thy Neighbour’ (KTN) theory from now on, is that a neuron receives many
synaptic inputs, contributing to subthreshold membrane potential fluctuations. Those fluc-
tuations lead to spiking output, and the analog information contained in the subthreshold
fluctuations is therefore converted to a digital signal which travels down the axon to other
neurons. The central hypothesis of that work is that the synapse has the task to decode the
spike train and estimate the presynaptic subthreshold membrane potential.

In a strict interpretation, this hypothesis requires that computations occur exclusively
in the dendrite, and that the combination of action potential generation and synaptic trans-
mission serves to transmit the result of that computation to the postsynaptic neurons. This
raises the question why spikes are needed at all, and whether the encoding scheme that is
employed is also optimal. A tentative explanation of the usefulness of spikes is the following:
Firstly, information has to be transmitted through the brain from one neuron to the next
via either an analog (e.g. electrical synapse) or a digital (e.g. chemical synapse via action
potential generation) means. Secondly, analog signals deteriorate with distance whereas
digital signal transmission is essentially loss-free. By converting inputs to action potentials,
a neuron incurs an initial loss due to the analog-to-digital conversions, but transmitting
the digital signal does not lead to further losses, even for distances that are very large. In
contrast, by not converting inputs to action potentials, transmission of the information is
limited to short-range targets, as the signal quality rapidly decays with the distance to the
target. Therefore it can be stipulated that there is a critical distance below which projections
can be analog and above which it is beneficial to convert the signal to action potentials first
(with associated energy costs) in order to reliably transmit it. We will come back to the
foundations of the KTN theory in Section 3.5.

The KTN theory is formalized mathematically as a Bayesian inference task (which may
also be called a stochastic filtering problem, see Section 3.1) in a stochastic generative model

5
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of neuronal activity, which holds that the membrane potential Ut follows an Ornstein-
Uhlenbeck (OU) process

dUt = −θ(Ut − ur) + bdWt, (1.2)

and that spiking activity follows an inhomogeneous Poisson process with an instantaneous
rate equal to the exponential of Ut

Nt −N0 ∼ Poisson
[∫ t

0
g0 exp(βUs)ds

]
. (1.3)

The authors then proceed to attack the problem of finding the conditional distribution of
the membrane potential conditioned on the spiking history,

P (UT | {Nt, 0 ≤ t ≤ T}) . (1.4)

In a sequence of derivations which we do not repeat here (we will show an alternative, more
general derivation in Section 3.1), they discretize time and solve the problem approximately
by doing recursive Bayesian estimation using assumed density filtering. After taking the
continuum limit, they find the following system of ODEs for the approximate posterior
mean µ(t) and the variance σ2(t):

µ̇(t) = −θ(µ(t)− ur) + βσ2(t)(s(t)− γ(t)),

σ̇2(t) = −2θ(σ2(t)− σ2
OU)− β2σ4(t)γ(t),

(1.5)

where σ2
OU = b2

2θ is the stationary (prior) variance of the OU process and

γ(t) = g0 exp
[
βµ(t) + 1

2β
2σ2(t)

]
(1.6)

is the posterior expectation of the firing rate g(Ut).
Pfister et al. (2009) establish a link between this approximate estimator and STP, for

which they bring forward three arguments:

1. The increment of the posterior mean µ(t) at the time of a presynaptic spike, given by
βσ2(tsp), is dynamic. When s(t) is a regular spike train of frequency f , the increment
approaches a stationary value after enough spikes have elapsed. This stationary incre-
ment is a decreasing function of the presynaptic stimulation rate f , and the shape of
this function is similar to the one observed for the stationary excitatory postsynaptic
potential (EPSP) amplitude found in in vitro studies of STP.

2. By properly tuning the parameters (v0, τv, J , and τx) of the depressive MT model
(defined by having a fixed release probability, i.e. y(t) = Y , F = 0), the dynamics of
v(t) of Eqs. (1.1) can be matched very closely to the dynamics of the posterior mean
µ(t) in Eqs. (1.5). Therefore, the postsynaptic potential of a properly tuned synapse
can perform the estimation task which was stated in the hypothesis.

3. In the low stimulation frequency limit, an analytic link can be established between
the dynamics of Eqs. (1.5) and (1.1).

6



1.4. The ‘Know Thy Neighbour’ theory of STP

The theory was later generalized to a model of subthreshold fluctuations which includes up-
and down-states, see Pfister et al. (2010).

The main prediction of the KTN theory is that for the synapse to perform the estima-
tion task, its STP parameters have to match the statistics of the presynaptic neuron (see
point 2 above). More precisely, if the presynaptic cell’s statistics under in vivo conditions is
well characterized by the OU process and inhomogeneous Poisson spiking, the downstream
synapses are predicted to be depressing, and to have metrics of STP consistent with those
derived from Eqs. (1.5). In order to test these predictions, in vivo intracellular data of a
neuron and STP data from a downstream synapse has to be available. The subsequent val-
idation would entail 1) fitting the presynaptic neuron’s intracellular recording with a statis-
tical model (see Chapter 2), 2) performing the calculations for the dynamics of the optimal
estimator, similar to Eqs. (1.5) (see Chapter 3), and 3) calculating STP predictions for the
protocols used to record STP data and comparing them to the data.

Let us clarify the use of the word ‘theory’ in relation to the Pfister et al. (2009) and Pfister
et al. (2010) studies and this thesis. It is clear that this does not constitute a well-established
theory which has been repeatedly confirmed by experiments, but rather a hypothesis. The
word ‘theory’ is used to describe the mathematical framework which allows quantitative
predictions, and we will also describe the extensions presented in this thesis as ‘extensions
of the theory’, despite the fact that they have not yet been experimentally confirmed.
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A Statistical Model for in vivo Neuronal Dynamics 2

(∗ This chapter has been published in Surace and Pfister (2015) ∗)

Single neuron models have a long tradition in computational neuroscience. Detailed
biophysical models such as the Hodgkin-Huxley model as well as simplified neuron mod-
els such as the class of integrate-and-fire models relate the input current to the membrane
potential of the neuron. Those types of models have been extensively fitted to in vitro data
where the input current is controlled. Those models are however of little use when it comes
to characterize intracellular in vivo recordings since the input to the neuron is not known.
Here we propose a novel single neuron model that characterizes the statistical properties
of in vivo recordings. More specifically, we propose a stochastic process where the sub-
threshold membrane potential follows a Gaussian process and the spike emission intensity
depends nonlinearly on the membrane potential as well as the spiking history. We first show
that the model has a rich dynamical repertoire since it can capture arbitrary subthreshold
autocovariance functions, firing-rate adaptations as well as arbitrary shapes of the action
potential. We then show that this model can be efficiently fitted to data without overfitting.
Finally, we show that this model can be used to characterize and therefore precisely compare
various intracellular in vivo recordings from different animals and experimental conditions.

2.1 Introduction
During the last decade, there has been an increasing number of studies providing intracel-
lular in vivo recordings. From the first intracellular recordings performed in awake cats
(Woody and Gruen, 1978; Baranyi et al., 1993) to more recent recording in cats (Steriade
et al., 2001), monkeys (Matsumura et al., 1988), mice (Poulet and Petersen, 2008), and even
in freely behaving rats (Lee et al., 2006), it has been shown that the membrane potential
displays large fluctuations and is very rarely at the resting potential. Some recent findings
in the cat visual cortex have also suggested that the statistical properties of spontaneous ac-
tivity is comparable to the neuronal dynamics when the animal is exposed to natural images
(El Boustani et al., 2009). Similar results have been found in extracellular recordings in the
ferret (Berkes et al., 2011). Those data are typically characterized by simple quantifications
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2. A Statistical Model for in vivo Neuronal Dynamics

such as the firing rate or the mean subthreshold membrane potential (Poulet and Petersen,
2008), but a more comprehensive quantification is often missing. So the increasing amount
of intracellular data of awake animals as well as the need to compare in a rigorous way the
data under various recording conditions call for a model of spontaneous activity in single
neurons.

Single neuron models have been studied for more than a century. Simple models such
as the integrate-and-fire model (Lapicque, 1907; Stein, 1967) and its more recent nonlinear
versions (Latham et al., 2000; Fourcaud-Trocmé et al., 2003; Brette and Gerstner, 2005) de-
scribe the relationship between the input current and the membrane potential in terms of a
small number of parameters and are therefore convenient for analytical treatment, but do not
provide much insight about the underlying biophysical processes. On the other end of the
spectrum, biophysical models such as the Hodgkin-Huxley model (Hille, 2001; Hodgkin
and Huxley, 1952) relate the input current to the membrane potential through a detailed
description of the various transmembrane ion channels, but estimating the model parame-
ters remains challenging (Gerstner and Naud, 2009; Druckmann et al., 2007). Despite the
success of those types of models, none of them can be directly applied to intracellular in
vivo recordings for the simple reason that the input current is not known.

Another reason why a precise model of spontaneous activity is needed is that there
are several theories that have been proposed that critically depend on statistical properties
of spontaneous activity. For example Berkes et al. validate their Bayesian treatment of
the visual system by comparing the spontaneous activity and the averaged evoked activity
(Berkes et al., 2011). Another Bayesian theory proposed the idea that short-term plasticity
acts as a Bayesian estimator of the presynaptic membrane potential (Pfister et al., 2010). To
validate this theory, it is also necessary to characterize spontaneous activity with a statistical
model that describes the subthreshold as well as the spiking dynamics.

The last motivation for a model that describes both the subthreshold and the suprathresh-
old dynamics is the possibility to separate those two dynamics in a principled way. Indeed,
it is interesting to know from the recordings what reflects the input dynamics and what as-
pect comes from the neuron itself (or rather what is associated with the spiking dynamics).
Of course a simple voltage threshold can separate the sub- and a suprathreshold dynamics,
but the value of the threshold is somewhat arbitrary and could lead to undesirable artifacts.
Therefore a computationally sound model that decides itself what belongs to the subthresh-
old and what belongs to the suprathreshold dynamics is highly desirable.

Here, we propose a single neuron model that describes intracellular in vivo recordings
as a sum of a sub- and suprathreshold dynamics. This model is flexible enough in order to
capture the large diversity of neuronal dynamics while remaining tractable, i.e. the model
can be fitted to data in a reasonable time. More precisely, we propose a stochastic process
where the subthreshold membrane potential follows a Gaussian process and the firing in-
tensity is expressed as a non-linear function of the membrane potential. Since we further
include refractoriness and adaptation mechanisms, our model, which we call the Adaptive
Gaussian Point Emission process (AGAPE), can be seen as an extension of both the log
Gaussian Cox process (Møller et al., 1998) and the generalized linear model (Truccolo et al.,
2005; Pillow et al., 2008; Paninski et al., 2009).
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2.2. Results

2.2 Results
Here we present a statistical model of the subthreshold membrane potential and firing pat-
tern of a single neuron in vivo. See Fig. 2.1A for such an in vivo membrane potential
recording. We first provide a formal definition of the model and then show a range of dif-
ferent results. 1) The model is flexible and supports arbitrary autocorrelation structures and
adaptation kernels. Therefore, the range of possible statistical features is very large. 2) The
model is efficiently fittable and the learning procedure is validated on synthetic data. 3) The
model can be fitted to in vivo datasets. 4) All the features included in the model are required
to provide a good description of in vivo data.

A B

u

s

usom

1
0
m
V

100 ms

Figure 2.1: (A) A sample in vivo membrane potential trace from an intracellular recording
of a neuron in HVC of a Zebra Finch. (B) The generative AGAPE model can generate a
trace of subthreshold membrane potential u (top trace). Based on this potential, a spike train
s is generated (middle, dashed vertical lines). Finally, a stereotypic spike-related kernel is
convolved with the spike train and added to u, giving rise to usom (bottom, thick line). This
quantity is the synthetic analog of the recorded, preprocessed in vivo membrane potential.

2.2.1 Definition of the AGAPE model
The AGAPE model is a single neuron model where the input to the neuron is not known,
which is typically the case under in vivo conditions. The acronym AGAPE stands for Adap-
tive GAussian Point Emission process since the subthreshold membrane potential follows
a Gaussian process and since the spike emission process is adaptive.

More formally, the AGAPE process defines a probability distribution p(usom, s) over
the somatic membrane voltage trace usom(t) and the spike train s(t) =

∑ns
i=1 δ(t−t̂i)where

t̂i, i = 1, ..., ns are the nominal spike times (decision times), which occur a certain fixed time
period δ > 0 before the peak of the action potential. From this probability distribution (or
generative model) it is possible to draw samples that look like intracellular in vivo activity
(for practical purposes, the samples will be compared to the preprocessed recordings, see
explanations below). The AGAPE model assumes that the somatic membrane voltage as a
function of time usom(t) is given by (see Fig. 2.1)

usom(t) = ur + u(t) + uspike(t), (2.1)

where ur is a constant (the reference potential), u(t) describes the subthreshold membrane
potential as a stochastic function drawn from a stationary Gaussian process (GP) (Ras-
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mussen and Williams, 2006)
u ∼ GP

[
0, k(t− t′)

]
(2.2)

with covariance function k(t− t′) (which can be parametrized by a weighted sum of expo-
nential decays with weights σ2

i and inverse time constants θi, see Materials and Methods).
For small values of δ (e.g. 1-3 ms), u(t) can be seen as the net contribution from the unob-
served synaptic inputs and uspike(t) is the spike-related contribution (see Fig. 2.1B) which
consists of the causal convolution of a stereotypical spike-related kernel α with the spike
train s(t), i.e.

uspike(t) =

∫ ∞

0
α(t′)s(t− t′)dt′. (2.3)

where α can be parametrized by a weighted sum of basis functions with weights ai, see Ma-
terials and Methods. Here, we have made a separation of subthreshold and suprathreshold
layers, in that whatever is stereotypic and triggered by the point-like spikes s(t) is attributed
to uspike(t), and the rest belongs to the fluctuating signal u(t). This separation need not cor-
respond to the biophysical distinction between synaptic inputs and active processes of the
recorded cell (i.e. the positive feedback loop of the spiking mechanism). Indeed, especially
for a choice of large δ (e.g. ∼ 20 ms), uspike(t) also contains large depolarizations due to
strong synaptic input which cannot be explained by the GP signal u(t).

Note that this model could easily be extended by including an additional term in Eq. (1)
which depends on an external input, e.g. a linear filter of the input (see also Discussion).
However, since this input current was not accessible in our recordings, its contribution was
assumed to be part of u(t) or uspike(t).

Now we proceed to the coupling between the subthreshold potential u(t) and the spik-
ing output, as well as adaptive effects associated with spike generation. These effects are
summarized by an instantaneous firing rate r(t) – as in the generalized linear model (GLM)
(Truccolo et al., 2005; Pillow et al., 2008; Paninski et al., 2009) or escape-rate models (Ger-
stner and Kistler, 2002) – which is computed from the value of the subthreshold membrane
potential at time t, u(t), and the spike history as

r(t) = g [A(t) + βu(t)] , A(t) =

∫ ∞

0
η(t′)s(t− t′)dt′, (2.4)

where β ≥ 0 is the coupling strength between u and the spikes, and A(t) is the adaptation
variable which is the convolution of an adaptation kernel η (which can be parametrized by
a weighted sum of basis functions with weights wi, see Materials and Methods) with the
past spike train. Also note that we choose not to model adaptation currents explicitly, since
they would simultaneously impact the membrane potential and the firing probability (see
Discussion). The function g is called gain function, and here we use an exponential one,
i.e. g [A(t) + βu(t)] = elog r0+A(t)+βu(t). Other functional forms such as rectified linear
or sigmoidal could be used depending on the structure of the data. However, this choice
has important implications on the efficiency of learning of the model parameters (Paninski,
2004). We define the probability density for s on an interval [0, T ] conditioned on u as

p(s|u) = exp
(
−
∫ T

0
r(t) dt

) ns∏
i=1

r(t̂i),

s(t) =

ns∑
i=1

δ(t− t̂i), 0 ≤ t̂1 < ... < t̂ns ≤ T, ns ∈ N0.

(2.5)
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2.2. Results

The parameter β connects the subthreshold membrane potential u to the rate fluctuations.
The magnitude of the rate fluctuations depend on the variance σ2 of u, and therefore we
use βσ as a measure of the effective coupling strength. When β > 0 the quantity θ(t) =
−A(t)/β can be regarded as a soft threshold variable which is modulated after a spike,
and u(t)− θ(t) is the effective membrane potential relevant for the spike generation. This
spiking process is a point process which generalizes the log Gaussian Cox process. Indeed,
when A = 0, Eq. (2.5) describes an inhomogeneous Poisson process with rate g [βu(t)].

Practically, if we want to draw a sample from the AGAPE process, we first draw a
sample u from the Gaussian Process (see S1 Text2.6 for how to do this efficiently), then
for each time t we draw spikes s(t) with probability density r(t) and update the adaptation
variable A(t). Finally, the somatic membrane potential is calculated using Eq. 2.1.

It is important to emphasize at this point that while the model may be directly fitted to
the raw membrane potential uraw as recorded by an intracellular electrode, we median filter
the data in order to avoid artifacts and downsample for computational efficiency (see ‘Mate-
rials and Methods’). In this study the model is always fitted to the preprocessed recordings
u∗som and this is reflected e.g. in the shape of α which is most strongly affected by the pre-
processing. It is important to keep in mind this point while interpreting the results of model
fitting. The details of the preprocessing steps which were used are given in the ‘Materials
and Methods’ section.

2.2.2 The model has a rich dynamical repertoire
The AGAPE provides a flexible framework which can be adjusted in complexity to model
a wide range of dynamics. While for the datasets presented here a covariance function was
used which consists of a sum of Ornstein-Uhlenbeck (OU) kernels, the Gaussian Process
(GP) allows for arbitrary covariance functions to be used. This includes simple exponential
decay (as produced by a leaky integrate-and-fire neuron driven by white noise current), but
it can produce also more interesting covariance functions such as power-law covariances,
which are reported in Pozzorini et al. (2013) and El Boustani et al. (2009), or subthreshold
oscillations, as reported in Buzsáki (2002).

The model is also able to reproduce a wide range of firing statistics. A common measure
of firing irregularity is the coefficient of variation (CV , i.e. the ratio of standard devia-
tion and mean) of the inter-spike interval distribution. In the absence of adaptation, the
AGAPE is a Cox process and therefore has a coefficient of variation CV ≥ 1 (Shinomoto
and Tsubo, 2001). The precise value of the CV is a function of the coupling strength (βσ)
as well as the autocorrelation of the GP. To illustrate this, we sampled synthetic data from
a simple version of the AGAPE where the subthreshold potential u is an OU process with
time-constant τ . As shown in Fig. 2.2A, the CV is an increasing function of the membrane
time-constant τ , baseline firing rate r0, and dimensionless coupling parameter between
membrane potential and firing rate βσ. Moreover, the range of the CV extends from 1
to ≈ 8 within a range of βσ ∈ [0, 2] and r0τ ∈ [2−2, 28]. In the presence of adaptation,
firing statistics are markedly different and can produce values of CV < 1 (Gerstner and
Kistler, 2002; Lindner et al., 2002). To illustrate this point, we considered an exponential
adaptation kernel, i.e. η(t) = −η0e

−t/τr . While the CV increases as a function of βσ and
r0τ as before, the range of values of the CV now also covers the interval (0, 1) which is
not accessible by the Cox process but which is observed in many neurons across the brain
(Softky and Koch, 1993). In order to study the influence of the parameters of the adapta-
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2. A Statistical Model for in vivo Neuronal Dynamics

tion mechanism, we fix βσ = r0τ = 1 and plot the CV as a function of r0τr and η0 (see
Fig. 2.2B). Within the parameter region explored in Fig. 2.2B, the CV spans values from
0.1 up to 1.6.
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Figure 2.2: The model has a rich dynamical repertoire (A,B) and can be correctly fitted
to synthetic data (C-F). (A,B) The coefficient of variation (CV ) of the inter-spike interval
distribution is computed for parameter values shown as black dots and then linearly inter-
polated. (A) The CV of a simple version of the AGAPE (k(t) = σ2e−t/τ , α = η = 0)
as a function of the model parameters (membrane time-constant τ , baseline firing rate r0
and coupling strength βσ). (B) CV of the AGAPE model with an exponentially adaptive
process with fixed membrane time-constant, firing rate and coupling (βσ = r0τ = 1) as a
function of the parameters describing adaptation, namely adaptation strength η0 and time-
constant τr. (C,D,E,F) Synthetic data is sampled from the AGAPE model with GP (D),
spike-related (E), and adaptation (F) kernels as depicted in black, and δ = 4 ms, r0 = 4.15
Hz, β = 0.374 mV−1. Then the AGAPE is fitted to the synthetic data by maximum like-
lihood (ML). (C) The maximum log likelihood per bin as a function of the parameter δ
has its maximum at the ground truth value δ = 4 ms. (D,E,F) The ML estimates (red) of
the GP, spike-related and adaptation kernels lie within two standard deviations (red shaded
regions, estimated by means of the observed Fisher information) from the ground truth.

2.2.3 The model can be learned efficiently
The parameters of the AGAPE model are learned through a maximum likelihood approach.
More precisely, we fit the model to an in vivo sample (highlighted by a ‘∗’) of preprocessed
somatic membrane potential u∗som and spike train s∗,δ by maximizing the log likelihood ap-
plied to the joint data set (u∗som, s

∗,δ) over the parameter space of the model (i.e. ur, log r0, β,
the coefficients of the kernels k, η, and α, and the delay parameter δ). The empirical spike
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train s∗,δ depends on the parameter δ because the formal spike times t̂i are assigned to be a
time period δ before the recorded peak of the action potential. The joint probability of the
data can be expressed as a product

p(u∗som, s
∗,δ) =

∫
p(u)p(s∗,δ|u)p(u∗som|u, s∗,δ)Du

=

∫
p(u)p(s∗,δ|u)δ(u∗som − u− ur − uspike)Du

= p(u = u∗som − ur − uspike)p(s
∗,δ|u = u∗som − ur − uspike)

≡ ps∗,δ(u
∗
som)p(s

∗,δ|u∗som).

(2.6)

The subscript s∗,δ of the first factor denotes the explicit dependence on the spike train. The
individual terms on the r.h.s. will be given below. The function we are optimizing is the
logarithm of the above joint probability which we can write as

L(ur, k, α, log r0, β, η, δ) = log ps∗,δ(u∗som;ur, k, α)

+ log p(s∗,δ|u∗som;ur, α, log r0, β, η).
(2.7)

It should be noted that the presence of the spike-related kernel α in both terms produces
a trade-off situation: removing the spike-related trajectory improves the Gaussianity of the
membrane potential u (and therefore boosts the first term) at the cost of the of the second
term by removing the short upward fluctuation that leads to the spike. This trade-off situa-
tion makes maximum likelihood parameter estimation a non-concave optimization problem.
Moreover, the evaluation of the GP likelihood of n samples, where n = O(105), comes at
a high computational cost. Two important techniques make the parameter learning both
tractable and fast: the first is the use of the circulant approximation of the GP covariance
matrix which makes the evaluation of the likelihood function fast. The second is the use of
an alternating fitting algorithm which (under an appropriate parametrization, see ‘Materials
and Methods’) replaces the non-concave optimization in the full parameter space with two
concave optimizations and a non-concave one in suitable parameter subspaces. Those two
techniques are further described in the next section.

2.2.3.1 Efficient likelihood computation

The log-likelihood function is evaluated in its discrete-time form with n time points sepa-
rated by a time-step ∆t. The GP variable u (which leads to usom through Eq. (2.1)) is mul-
tivariate Gaussian distributed with a covariance matrix Kij = k(ti − tj), where ti = i∆t.
The matrix K is symmetric and, by virtue of stationarity, Toeplitz. Evaluation of the GP
likelihood requires inversion of K, which is computationally expensive (the time required
to invert a matrix typically scales with n3). For this reason we approximate this Toeplitz
matrix by the circulant matrix C which minimizes the Kullback-Leibler divergence (see
(Katsaggelos and Lay, 1991; Bach and Jordan, 2004; Gray, 2006) and S1 Text2.6)

C = argmin
D circulant

DKL [N (m,K)||N (m,D)] (2.8)

between the two multivariate Gaussian distributions with the same mean but different co-
variance matrices. This optimization problem can be solved by calculating the derivative
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of DKL [N (m,K)||N (m,D)] with respect to D and using the diagonalization of D by a
Fourier transform matrix (Gray, 2006). After a bit of algebra (see S1 Text2.6), denoting
ki = K1i and kn+1 ≡ 0, the optimal circulant matrix can be written asCij = c(i−j mod n)+1,
where i, j = 1, ..., n and

ci =
1

n
[(n− i+ 1)ki + (i− 1)kn−i+2] . (2.9)

The replacement ofK byC is equivalent to having periodic boundary conditions onu, which
has a small effect under the assumption that the time interval spanned by the data is much
longer than the largest temporal autocorrelation length of k. So the first term on the r.h.s.
of Eq. (2.6) is a multivariate Gaussian density N (0, C). The determinant of the covariance
matrixC is the product of eigenvalues, which for a circulant matrix are conveniently given by
the entries of ĉ, the discrete Fourier transform of c (see the S1 Text2.6 for our conventions
regarding discrete Fourier transforms). Also the scalar product uTC−1u can be written in
terms of ĉ. Together, the first term on the r.h.s. of Eq. (2.6) takes the simple form

log ps∗,δ(u∗som) = −1

2

n∑
i=1

(
log(2πĉi) +

1

n

|ûi|2

ĉi

)
, (2.10)

where ûi are the components of the discrete Fourier transform of u∗. The Gaussian com-
ponent of the membrane potential u is implicitly given by the discretized somatic voltage
modified by a discrete-time version of the spike-related kernel convolution,

u∗i = u∗som,i − ur −
i−1∑
j=1

αjs
∗,δ
i−j , (2.11)

where s∗,δi is the binned spike train (see below),αi is a discretized version of the spike-related
kernel. The time required to compute log ps(u∗som) is determined by the complexity of the
Fourier transform, which is of the order of n logn. This dramatic reduction in complexity
(compared to n3) allows a fast evaluation of the log-likelihood.

The spiking distribution p(s∗,δ|u∗som) is approximated by a Poisson distribution with
constant rate within one time bin. For each bin, s∗,δi counts the number of spikes that occur
in that bin, and the conditional likelihood of the spikes therefore reads

log p(s∗,δ|u∗som) =
n∑

i=1

{
s∗,δi log [ri∆t]− ri∆t− log

[
s∗,δi !

]}
, (2.12)

where ri = g[βu∗i +
∑i−1

j=1 ηjs
∗,δ
i−j ] and u∗i as defined in Eq. (2.11). If s∗,δi contains only

zeros and ones (which can be accomplished given small enough bins), the last term log s∗,δi !
vanishes.

2.2.3.2 Efficient parameter estimation

Except for the parameter δ, which takes discrete values of multiples of the discretization step
∆t, it is possible to analytically calculate the first and second partial derivatives of the like-
lihood function defined in Eq. (2.6) with respect to the model parameters (ur, k, α, log r0,
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β, η) (see S1 Text2.6) to facilitate the use of gradient ascent, Newton, and pseudo-Newton
optimization algorithms. A desirable feature of an optimization problem is concavity of the
objective function (in our case, the log-likelihood function). Even though the problem of
finding optimal parameters for the AGAPE process is not concave, the optimization can
be done in three alternating subspaces (see Fig. 2.3). The full set of parameters Θ is di-
vided into three parts: θGP for the GP parameters (ur, parameters of k), θspike kernel for the
spike-related kernel parameters, and θspiking for the parameters controlling spike emission
(log r0, β and parameters of η). The optimization then proceeds according to the following
cycle: (1) the GP parameters are learned, (2) the spike-related kernel parameters are learned,
and lastly (3) the spiking parameters are learned. In each step the remaining parameters are
held fixed. The cycle is repeated until the parameters reach a region where the log likelihood
is locally concave in the full parameter space, after which the optimization can be run in the
full parameter space until it converges. Joint concavity of the log likelihood holds if all the
eigenvalues of the Hessian matrix are strictly negative. As shown in Paninski (2004), step
(3) is concave for a certain class of gain functions g, including the exponential function, and
linear parametrizations of the adaptation kernel. The same holds for the spiking term of
the log-likelihood in step (2). The voltage term of the log likelihood of step (2) is concave
by numerical inspection in the cases we considered. To summarize, steps (2) and (3) are
concave and Newton’s method can be used in these steps as well as for the final concave op-
timization in the full space. Step (1) is non-concave and therefore a simple gradient ascent
algorithm is used.

The optimization over (ur, k, α, log r0, β, η) is repeated for every δ = 0,∆t, 2∆t,..., δmax
in order to select the one δ that maximizes the log-likelihoodL(ur, k, α, log r0, β, η, δ). The
value of δmax is chosen such that it is less than the least upper bound of the support of the
basis of the spike-related kernel α. Since the parameters ur, k, α, log r0, β, η are expected
to change only a little when going from one δ to the next, δ + ∆t, learned parameters for
δ can be used as initial guesses for nearby δ + ∆t or δ − ∆t. We thus get two different
initializations, which we can exploit by starting e.g. with δ = 0, ascending through the
sequence of candidate δ’s up to the maximum δ, and descending back to zero.

2.2.4 Validation with synthetic data

Despite this improvement in speed and tractability, the optimization is still riddled with
multiple local minima which require the use of multiple random initializations. In order
to demonstrate the validity of the fitting method, synthetic data of length 270.112 seconds
(n = 270112, the same as in vivo dataset D1, see below) was generated with known pa-
rameters (δ = 4 ms, r0 = 4.15 Hz, β = 0.374 mV−1 and GP, spike-related kernel and
adaptation kernels as depicted in Fig. 2.2D-F). The learning algorithm was initialized with
least-squares estimates of the covariance function parameters σ2

i based on the empirical au-
tocorrelation function of usom and spike-related kernel and adaptation kernels set to zero.
The true underlying δ can be recovered from the synthetic data (Fig. 2.2C). Moreover, the
algorithm converges after a few dozen iterations (taking only three minutes on an ordinary
portable computer) and – with δ set to 4 ms – recovers the correct GP, spike-related, and
adaptation kernels (Fig. 2.2D-F). All ML estimates lie within a region of two standard devi-
ations around the ground truth, where standard deviations are estimated from the observed
Fisher information (Efron and Hinkley, 1978).
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2. A Statistical Model for in vivo Neuronal Dynamics

Optimize over
θGP = (ur, k)

Optimize over
θspike shape = (α)

Optimize over
θspiking =

(log r0, β, η)

Check concavity

Optimize over
Θ =(ur, k, α,
log r0, β, η)

neg.

pos.

concave concavenon-concave

Figure 2.3: This schematic shows the optimization scheme that is used to learn the pa-
rameters of the AGAPE model when it is fitted to the data (for a given δ). As long as
the current parameter estimate sits in a non-concave region of the likelihood function, the
top cycle optimizes over different subspaces of the parameter space. If and when a concave
point is reached, the optimization proceeds in the full parameter space. This whole scheme
is repeated for each value of δ in order to find the optimal one.

2.2.5 The model can fit in vivo data
We fitted the model to a number of in vivo traces from different animals and conditions (see
‘Materials and Methods’ for a detailed description of the data sets). We would like to remind
the reader at this point that the model is never fitted to the raw membrane potential, but to
a preprocessed, i.e. median-filtered and downsampled dataset (see Materials and Methods).
Because of this preprocessing stage, the model only sees the truncated action potentials
which emerge from the median filter. This is reflected in the extracted spike-related kernel
α, which is characterized by a smaller amplitude than the original action potential in the
raw membrane potential data.

We show the detailed results of the model fitting for the example songbird HVC dataset
D1. The optimal value of δ for this dataset was δ = 18 ms (see S3 Fig), with which the
model captures the subthreshold and suprathreshold statistics (smaller values of δ compro-
mise both the subthreshold and suprathreshold description because the large upward fluc-
tuations which preceed spikes in this dataset are unlikely to arise from a GP). In particular,
the stationary distribution of the membrane potential u is well approximated by a Gaus-
sian (Fig. 2.4B) and pronounced after-hyperpolarization is seen in the spike-related kernel
(Fig. 2.4D). The subthreshold autocorrelation structure is well reproduced by the parametric
autocorrelation function k (Fig. 2.4C). The adaptation kernel reveals an interesting structure
in the way the spiking statistics deviates from a Poisson process (Fig. 2.4E). This feature of
the spiking statistics is also reflected in the inter-spike interval (ISI) distribution (Fig. 2.4F).
Both the data and the fitted model first show an increased, and then a significantly decreased
probability density when compared to a pure Poisson process. The remaining parameters
are listed in Tab. 2.1 (errors denote two standard deviations, estimated from Fisher informa-
tion, see Materials and Methods). The model can be used to generate synthetic data, which
is shown in Fig. 2.4H.

In order to show the generality of the model, we fitted the model on two more datasets,
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Figure 2.4: The results of maximum likelihood (ML) parameter fitting to datasetD1. After
fitting, we see (A) the removal of the spike-related kernel through the difference between
the recorded trace u∗som and the subthreshold membrane potential u+ ur; (B) the match of
the stationary distribution of the subthreshold potential u and a Gaussian. We also observe
that (C) the autocorrelation function of the data, Eq. (2.14), is well reproduced by k(t) in
Eq. (2.15); (D) the spike-related kernel α(t) starts at −δ = −18 ms relative to the peak
of the action potential. The difference between the spike-triggered average (STA) and the
spike-related kernel is attributed to the GP; and (E) that the adaptation kernel η(t) shows
distinct modulation of firing rate which produces firing statistics significantly different from
a Poisson process. This is also reflected in the inter-spike interval density ρ(τ) (F) of the
data, which shows good qualitative agreement with a simulated AGAPE with adaptive
kernel as in (E) (thick red line), but not by a non-adaptive (i.e. Poisson) process (thin red
line). After fitting, a two second sample of synthetic data (H) looks similar as the in vivo
data (G). In (G,H) vertical lines are drawn at the spiking times. All red shaded regions
denote ± 2 standard deviations, estimated from the observed Fisher information.
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2. A Statistical Model for in vivo Neuronal Dynamics

Dataset D1 D3 D4

δ [ms] 18 12 32
ur [mV] -52.9±0.2 -66.6±0.1 -51.5±0.5
r0 [Hz] 11.7±0.6 71±5 0.15±0.05
β [mV−1] 0.12±0.01 0.24±0.02 0.46±0.05
βσ [1] 0.45±0.03 0.67±0.04 1.3±0.1

Table 2.1: The values (p.m. two standard deviations, estimated from the observed Fisher
information) of the fitted parameters not shown in Fig. 2.5 for the in vivo datasets described
in the main text. The last row shows the effective coupling strength between the membrane
potential and the firing rate, given by β times the standard deviation σ of the membrane
potential.

D3 from another HVC neuron andD4 from mouse visual cortex. The parameter δ was found
to take the optimal value of 12 ms for D3 and 32 ms for D4 (to see how fitted parameters
change as a function of δ, see S4 Fig and S5 Fig). The comparison of the GP, spike-related
and adaptation kernels is shown in Fig. 2.5, and the remaining parameters are listed in
Tab. 2.1. The three cells show pronounced differences in autocorrelation structure, spike-
related kernel and spike-history effects. In particular the two datasets D1 and D4 show
rather long autocorrelation lengths of the membrane potential and asymmetric spike-related
kernels, whereas the cell in D3 has comparatively short autocorrelation length and very
pronounced hyperpolarization. Adaptation is much stronger in D3 than in D1, balancing
the much higher baseline firing rate r0, see Tab. 2.1. The error bars on the adaptation kernel
are small for datasets D1 and D3 due to the abundance of spikes. On the other hand, the
adaptation kernel of dataset D4 is poorly constrained by the available data. This is due to
the fact that dataset D4 consists of very short trials with very few spikes. Despite this fact,
good agreement is achieved between the distribution of inter-spike intervals of the in vivo
data and ISI statistics sampled from the AGAPE (see Fig. 2.5, bottom row) for all datasets.

2.2.6 The model does not overfit in vivo data

The AGAPE process has a fairly large number of parameters. Therefore it is important to
check whether the model overfits the data, compromising its generalization performance.
In short, when a model has too many parameters, it tends to be poorly constrained by the
data and therefore when the model is first trained on one part of the data and then tested
on another part on which it is not trained, the test performance will be significantly worse
than the training performance.

Here, we use cross-validation to perform a factorial model comparison on an exemplary
dataset in order to validate the different structural parts of the model. The procedure is
described in detail in the Materials and Methods.

Model comparison is performed on the dataset D2 and the results are shown in Fig. 2.6,
where the mean difference of per-bin log-likelihood (see ‘Materials and Methods’)

∆pvalid
i = ⟨∆pvalid

ij ⟩j , ∆ptest
i = ⟨∆ptest

ij ⟩j , ∆pvalid,test
ij = pvalid,test

i,j − pvalid,test
Gαβη,j (2.13)
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Figure 2.5: Fitting results for three different datasets. Dataset D1 is the same as in Fig. 2.4,
i.e. an HVC neuron from anesthetized Zebra Finch. D3 is from HVC in awake Zebra
Finch, and D4 is from mouse visual cortex in awake mouse. The different panels show the
results after fitting; in the first line the GP covariance function k(t) (red) and the empirical
autocorrelation (black), Eq. (2.14), in the second line the spike-related kernel α(t), in the
third line the adaptation kernel η(t), and in the fourth line the inter-spike interval density
ρ(t) (data ISI histogram in gray, simulated ISI distribution from AGAPE in red). There
are pronounced differences between datasets in all three kernels, showing the flexibility of
the AGAPE model in describing a wide range of statistics. All red shaded regions denote
± 2 standard deviations, estimated from the observed Fisher information.
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is shown for all models i ∈ {0, ..., Gαβη} (here, ⟨·⟩j denote averages over chunks j of the
cross-validation). The results are very similar for both validation data (which was left-out
during training, but appeared in other training runs) and the test data which was never seen
during training. The most complex model (MGαβη) performs significantly better than any
one of the simpler models on validation data except MGαη where the difference is too small
and lies inside a region of two standard errors of the mean. This confirms that most of the
model features are required to provide an accurate description of the experimental data.
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Figure 2.6: Comparison of the different models on dataset D2. The relative measure of
model performance, i.e. the per-bin log-likelihood ∆p (see Eq. (2.13)) between any model
and the most complex model (MGαβη) are significantly negative (with exception of MGαη,
and trivially MGαβη) , implying that the added complexity improves the model fit without
overfitting. This holds for both validation scores ∆pvalid (black) and scores from unseen test
data ∆ptest (red). Error bars denote one standard error of the mean (S.E.M.). The biggest
improvement of fit quality is achieved by including the spike-related kernel (upper vs. lower
part of the figure).

2.3 Discussion
In this study, we introduced the AGAPE generative model for single-neuron statistics in
order to describe the spontaneous dynamics of the somatic potential without reference to an
input current. We showed that this model has a rich dynamical repertoire and can be fitted
to data efficiently. By fitting a heterogeneous set of data, we finally demonstrated that the
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AGAPE model can be used for the systematic characterization and comparison of in vivo
intracellular recordings.

2.3.1 Flexibility and tractability of the model
The AGAPE model provides a unified description of intracellular dynamics, offering a large
degree of flexibility in accounting for the distinct statistical features of a neuron. As the
example datasets demonstrate, the model readily teases apart the differences in the statistics
which exist between different cells in different animals (see Fig. 2.5). This shows that the
model is sensitive enough to distinguish between datasets which are in fact very similar.

We used a set of approximations and techniques to make the model fitting tractable,
despite the non-concavity of the log likelihood function. It is still the case that multiple
local maxima of the likelihood function can make the fitting somewhat hard, especially if
the quantity of data available for fitting is quite low. However, since one run of the fitting
itself takes only a few minutes even on a portable computer, multiple initializations can be
tried out in a relatively short amount of time.

2.3.2 Comparison with existing models
From an operational perspective, existing spiking neuron models can be divided into three
main categories: stimulus-driven, current-driven and input-free spiking neurons. The first
category contains phenomenological models that relate sensory stimuli to the spiking out-
put of the neuron. The linear-nonlinear-Poisson model (LNP) (Chichilnisky, 2001), the
generalized linear model (GLM) (Truccolo et al., 2005; Pillow et al., 2008; Paninski et al.,
2009) or the GLM with additional latent variables (Vidne et al., 2012) are typical examples
in this category. Even though the spike generation of the AGAPE shares some similarities
with those models, there is an important distinction to make. In those models the convolved
input (i.e. the output of the ‘L’ step of the LNP or the input filter of the GLM) is an inter-
nal variable that does not need to be mapped to the somatic membrane potential whereas in
our case, the detailed modeling of the membrane potential dynamics is an important part
of the AGAPE. Consequently, those phenomenological models are descriptions of extra-
cellular spiking recordings whereas the AGAPE models the dynamics of the full membrane
potential accessible with intracellular methods.

The second class of spiking models aims at bridging the gap between the input cur-
rent and the spiking output. The rather simple integrate-and-fire types of models such as
the exponential integrate-and-fire (Brette and Gerstner, 2005) or the spike-response model
(Gerstner and Kistler, 2002; Jolivet et al., 2006) as well as the more biophysical models such
as the Hodgkin-Huxley model (Hodgkin and Huxley, 1952) fall within this category. In
contrast to those models where the action potentials are caused by the input current, the
AGAPE produces a fluctuating membrane potential and stochastic spikes without a refer-
ence to an input current.

The last category of models aims at producing spontaneous spiking activity without an
explicit dependence to a given input (Cunningham et al., 2007; Pfister et al., 2010; Macke
et al., 2011). For example, Cunningham et al. propose a doubly stochastic process where
the spiking generation is given by a gamma interval process and the firing intensity by a
rectified Gaussian process, which provides a flexible description of the firing statistics (Cun-
ningham et al., 2007). However, the membrane potential dynamics is not modeled. In
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2. A Statistical Model for in vivo Neuronal Dynamics

opposition, the neuronal dynamics assumed by Pfister et al. (Pfister et al., 2010) models
explicitly the membrane potential (as a simple Ornstein-Uhlenbeck process) but is not flex-
ible enough to capture the dynamics of in vivo recordings. Also any of the current-driven
spiking neuron models mentioned above can be turned into an input-independent model
by assuming some additional input noise. So why is there a need to go beyond stochastic
versions of those models? An integrate-and-fire model with additive Gaussian white noise
is certainly fittable, but does not have the flexibility to model arbitrary autocorrelation for
the membrane potential. At the other end of the spectrum, a Hodgkin-Huxley model with
some colored noise would certainly be able to model a richer dynamical repertoire, but the
fitting of it remains challenging (Gerstner and Naud, 2009) (but see (Druckmann et al.,
2007)). The main advantage of the AGAPE is that it is at the same time very flexible and
easily fittable. The flexibility mostly comes from the fact that any covariance function can
be assumed for the GP process. The relative ease of fitting comes from the circulant approx-
imation as well as from the presence of concave subspaces in the full parameter space.

Another distinct feature of our model with respect to other existing models is the explicit
modeling of the spike-related trajectory instead of the spike-triggered average (as e.g. in
Mensi et al. (2012)). Even though both concepts share similarities - both would capture a
sudden and strong input that lead to a spike - there is an important distinction. The spike-
triggered average also captures the (possibly smaller) upward fluctuations of the membrane
potential which causes the spike while the spike-related kernel α precisely avoids capturing
those fluctuations, letting the GP kernel explain them.

So if we removed the spike-triggered average e.g. in synthetic data where the true cou-
pling parameter β is large, we would also remove the characteristic upward fluctuation of
the membrane potential which causes the spike. By doing so, the fitting procedure would
not find the correct relation between the values of the membrane potential and the observed
spike patterns and therefore choose a β close to zero. Thus, if something has to be removed
around an action potential (and our model comparison, Fig. 2.6, demonstrates convincingly
that this is necessary), the formulation of the model demands that it is parametrically ad-
justable. This is the main reason why in our model framework the spike-triggered average
has to be rejected as a viable extraction method. Note that if the true coupling parameter β
is close to zero, the spike-triggered average is close to the extracted spike-related kernel α.
For data where the action potential shape shows considerable variability, the model could
be generalized to include a stochastic or a history-dependent spike-related kernel.

2.3.3 Extensions and future directions
Despite the focus of the present work on single-neuron spontaneous dynamics, the AGAPE
model admits a straightforward inclusion of both stimulus-driven input and recurrent in-
put. The inclusion of stimulus-driven input is similar as for the GLM model and allows the
model to capture the neuronal correlate of stimulus-specific computation. The recurrent in-
put makes the framework adaptable to multi-neuron recordings in vivo. While intracellular
recordings from many neurons in vivo are very hard to perform, the rapid development of
new recording techniques (e.g. voltage-sensitive dyes) makes the future availability of sub-
threshold data with sufficient time-resolution at least conceivable. The full-fledged model
would allow questions regarding the relative importance of background activity, recurrent
activity due to computation in the circuit, and activity directly evoked by sensory stimuli
to be answered in a systematic way. In this setup, the contribution of the GP-distributed
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membrane potential to the overall fluctuations would be reduced (since it has to capture
less unrecorded neurons) while the contribution of the recorded neurons would increase.
This modified model can be seen as a generalization of the stochastic spike-response model
(Gerstner and Kistler, 2002) or a generalization of the GLM (if the internal variable of the
GLM is interpreted as the membrane potential).

So far, we assumed that weak synaptic inputs are captured by the Gaussian process
while the strong inputs that lead to the spikes are captured by the spike-related kernel α. A
straightforward extension of the model would be to consider additional intermediate inputs
that cannot be captured by the GP nor by the spike-related kernel α but that can drive the
neuron to emit (with a given probability) an action potential. Those intermediate input could
be modeled as filtered Poisson events. The inclusion of those latent events would increase
the complexity of the model and at the same time change some of the fitted parameters. In
particular, we expect that it would increase the coupling β between the membrane potential
and the firing rate and reduce the optimal delay δ between the decision time and the peak
of the action potential. This could also provide a better way to separate the subthreshold
dynamics (which depends on the input activity) from the suprathreshold dynamics (which
would depend only on the neuron dynamics, and not on the strong inputs that it receives,
as it is the case now).

A central assumption of our model is that of a Gaussian marginal distribution of the
subthreshold potential. Although it is remarkably valid for the dataset considered here (i.e.
the HVC datasetD1 see also Fig. 2.4B), datasets characterized by a distinctly non-Gaussian
voltage distribution even after spike-related kernel removal are beyond the scope of the cur-
rent model. In order to address this limitation, the Gaussian process could be extended to
a different stochastic process, e.g. a nonlinear diffusion process, permitting non-Gaussian
and in fact arbitrary marginal distributions. Moreover, a reset behavior similar to the one
exhibited by an integrate-and-fire model (Brette and Gerstner, 2005) could be achieved
with a non-stationary GP which features a mean which is reset after a spike. Both modifi-
cations would have a severe impact on the technical difficulty of model fitting. Therefore,
the Gaussian assumption can be regarded as a useful compromise which is preferable over
a perfect account for the skewness of the marginal distribution.

The spike-related kernel method to separate subthreshold and suprathreshold dynamics
is an important feature of the model which is used to rid the membrane potential recording
of stereotypic waveforms associated with a spike. The spike related kernel as modeled in the
AGAPE has no bearing on the probability of the spikes, whereas the adaptation kernel η
which modulates the firing rate after a spike is not visible in the somatic membrane poten-
tial dynamics. A simple extension of the model could include spike-triggered adaptation
currents which affect both the somatic membrane potential as well as the firing intensity.
Another possible extension is to allow the firing probability to depend on a filtered version
of the subthreshold potential u instead of the instantaneous value of u at a time δ before
the peak of the action potential. Both of the mentioned extensions would improve the bio-
physical interpretability of the AGAPE, but they would also vastly increase the number of
parameters. Therefore, a model comparison would be required to determine what level of
model complexity is required in order to characterize the statistics of the recording.

In the present study, the AGAPE was fit to different datasets of two different ani-
mals and brain regions. A systematic fitting to in vivo intracellular data from a wide range
of animals and brain regions would constitute a classification scheme which does not only
complement existing classifications of neurons which are based on electrophysiological, mor-
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phological, histological, and biochemical data; such as the one in Markram et al. (2004), but
which is in direct relationship with the computational tasks the brain is facing in vivo.

Another application of the AGAPE could be in the context of a normative theory of
short-term plasticity. Indeed, it has been recently hypothesized that short-term plasticity
performs Bayesian inference of the presynaptic membrane potential based on the observed
spike-timing (Pfister et al., 2010, 2009). According to this theory, short-term plasticity
properties have to match the in vivo statistics of the presynaptic neuron. Since the AGAPE
provides a realistic generative model of presynaptic activity under which inference is sup-
posedly performed, our model can be used to make testable predictions on the dynamical
properties of downstream synapses.

2.4 Materials and Methods
2.4.1 Description of the datasets used

1. Dataset D1 is a recording from a HVC neuron of an anesthetized Zebra Finch (On-
dracek and Hahnloser, unpublished recordings). The recording has a total length of
270 seconds at 32 kHz (see Fig. 2.1A for a snippet of this recording) and contains
2281 action potentials.

2. Dataset D2 is another recording from a projection cell in HVC of Zebra Finch, but
this time the animal is awake (Vallentin and Long, unpublished recordings). It con-
sists of 6 individual recordings which together have a length of 152.5 seconds at 40
kHz. This dataset is used for model comparison (see below).

3. DatasetD3 is from similar conditions asD2 (Vallentin and Long, unpublished record-
ings, see (Long et al., 2010; Hamaguchi et al., 2014; Vallentin and Long, 2015) for
similar recordings) and has a length of 60 seconds.

4. Dataset D4 consists of 19 individual trials of 4.95s duration at 20 kHz. The record-
ing was obtained from a pyramidal neuron in layer 2/3 of awake mouse visual cortex
(Haider et al., 2013).

2.4.2 Preprocessing
Intracellular voltage traces are often recorded at a rate between 20 and 40 kHz. This allows
the action potentials to be resolved very clearly and precise spike timings to be extracted.
However, for the study of the subthreshold regime, this high sampling rate is not required,
and therefore the data may be down-sampled to roughly 1 kHz after obtaining the precise
spike timings. Prior to down-sampling, we smooth with a median filter of 1ms width in
order to truncate the sharp action potential peaks and avoid artifacts (see details below).

We define the spike peak times t̂i,peak operationally as the time where the local maximum
of the action potential is reached. This means that t̂i,peak occurs after action potential onset,
and hence the spike-related kernel has to extend to the past of t̂i,peak. The spike-related
kernel starts at the nominal spike time t̂i which is shifted from the peak time by a fixed
amount δ, i.e. t̂i,peak = t̂i+ δ. The nominal spike times t̂i are then binned to 1 ms, yielding
a binary spike train si = 0, 1.
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For usom(t) we use a preprocessed version of the recorded trace which has been median-
filtered with a width of the filter of 1 ms and then down-sampled to 1 kHz, making it
the same length as the binary spike train. This procedure preserves the relevant correlation
structure of the membrane potential while reducing the computational demands of fitting
as much as possible. In the data we examined, the median-filtered membrane potential has
a dip after t̂i,peak, but unless down-sampling is done carefully, this dip sometimes occurs
one timestep after t̂i,peak and sometimes right at t̂i,peak in the downsampled usom. Since
this dip will have to be captured by the spike-related kernel which has a fixed shape for all
action potentials, the down-sampling procedure has to ensure that the dip occurs always in
the first time-step. We solved this problem by setting the down-sampled value of usom at
t̂i,peak (rounded to 1 ms) to the value of usom at t̂i,peak before down-sampling.

While applying the model to the raw recording uraw directly (without first filtering and
downsampling it) is possible in principle, it comes at a massively increased computational
cost. In the interest of time required to fit the model and amount of data having to be
handled, it is therefore sensible to include that pre-processing stage.

2.4.3 Parametrizations and initializations
We already introduced the parameters ur, r0 and β. Additional parameters are needed to
describe the autocorrelation k(t), the spike-related kernel α(t) and the adaptation kernel
η(t).

The covariance function of the GP has to be parametrized such that it can explain the
autocorrelation structure of the data. Therefore, an initial examination of the empirical
autocovariance of usom, i.e.

kemp(j∆t) =
1

n− j − 1

n−j∑
i=1

(
usom,i −

1

n− j

n−j∑
k=1

usom,k

)

×

(
usom,i+j −

1

n− j

n−j∑
k=1

usom,k+j

)
,

(2.14)

for j = 0, ..., jmax, is done in order to determine a suitable basis. Here, we used a sum of
Ornstein-Uhlenbeck (OU) kernels, i.e.

k(t) =

nk∑
i=1

σ2
i e

−θi|t|, (2.15)

where nk = 10 and θi = 2−i ms−1. The autocovariance has to remain positive definite.
This induces the following linear constraints:

ĉi =

nk∑
j=1

σ2
j ĉ

(j)
i > 0, ∀i = 1, ..., n, (2.16)

on σ2
i , where ĉ

(j)
i are the discrete Fourier transforms of the circulant basis vectors. The

optimization problem is non-concave in the subspace of σ2
i and multiple local maxima and

saddle points can occur. Therefore, multiple initializations have to be made in order to
find a potential global optimum. In general, the least-squares fit of k(t) to the empirical
autocovariance function (2.14) yields a good starting point for the optimization.
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The spike-rate adaptation kernel is chosen to be a linear combination of ten different
alpha shapes

η(t) =

{∑nη

i=1wi [exp(−νit)− exp(−ωit)] , t > 0,

0, t ≤ 0,
(2.17)

where we chose nη = 10, νi = 2ωi and νi = 2−i ms−1.
Since the median filter time constant is short, the voltage change around the spike can be

fast, requiring flexible spike-related kernel basis. Most of this flexibility is required around
t = δ. Because δ is adapted, we choose a discrete parametrization which has equal flexibility
from t = 0 up to a maximum t. In our case, this maximum is at t = 60 ms, and therefore
our parametrization of the spike-related kernel reads

α(t) =

{
ai, if t ∈ [i∆t, (i+ 1)∆t)

0, else
(2.18)

where ai ∈ R, i = 1, ..., 60 are the free parameters. Since the spike-related kernel fitting
is concave, the large number of parameters does not lead to a dramatic increase of compu-
tational time. It also does not lead to overfitting, as is evidenced by the smoothness of the
fitted kernels (see updated Figs.4,5 in the main text and the new S3-S5) and by the new
model comparison results (see updated Fig.6 in the main text).

2.4.4 Model validation
We performed a factorial model comparison (see Fig. 2.6) where the four factors were the
presence/absence of each of the following: multiple OU components in the GP autocorrela-
tion function (see Eq. (2.15), as opposed to only one OU kernel with variable time-constant),
the spike-related kernel α, coupling between u and s (through β) and adaptation η, which
gives a total of 16 different models. We use the nomenclature that M0 is the simplest
model, e.g. α = β = η = 0 and only one OU component, having only four parameters
(ur, θ, σ and r0). A subscript G (for GP) indicates that we use the multiple OU basis and
any other subscript indicates that the corresponding parameter is adjustable in addition to
the parameters already present in M0 and the parameters that are associated with the sub-
scribed ones. E.g. MGα indicates that we use the multiple OU basis and allow a non-zero
spike-related kernel and that there are now 73 parameters (δ, ur, θi, ai for i = 1, ..., 60, and
log r0). The parameter δ is optimized only for the 12 out of 16 models which depend on
this parameter, i.e. that have at least β ̸= 0 or α ̸= 0.

For each of the modelsM ∈ {M0, ...,MGαβη}, we performed eight-fold cross-validation
(Arlot and Celisse, 2010) on dataset D2 in order to assess the models’ generalization perfor-
mance. The entire dataset was cut into eight equally-sized chunks dj , where j = 1, ..., 8,
each of length 15s (n = 15000), and six chunks of 3s d′j , j = 1, ..., 6 set aside as a test set
(n′ = 3000). Each model was then trained on seven out of eight chunks (treating them as in-
dependent samples) giving an optimal set of parametersΘi

j = argmaxΘ p({dk, k ̸= j} |Mi,Θ)

and training per-bin log-likelihood ptrain
ij = 1

7n log p({dk, k ̸= j} |Mi,Θ
i
j). Then the vali-

dation likelihood pvalid
ij = 1

n log p(dj |Mi,Θ
i
j) of the left-out chunk #j was evaluated. The

unseen data d′j is used for a final benchmark of model performance, where the best set of
parameters is selected for each model, i.e. ptest

ij = 1
n′ maxk=1,...,8 log p(d′j |Mi,Θ

i
k).
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2.6 Supplementary Text
2.6.1 Discrete Fourier Transform
In the following and in the main text, we denote discrete Fourier transforms of vectors of
length n by a hat. The Fourier transformed vector is again of length n and can be formally
expressed as

v̂ = Fv, (Fn)ij = e
2πI(i−1)(j−1)

n , i, j = 1, ..., n, (2.19)

where I denotes the imaginary unit. In practice, discrete Fourier transforms are not actu-
ally computed by matrix multiplication, but by means of a Fast Fourier Transform (FFT)
algorithm.

2.6.2 Circulant matrices
In order to reduce the computational complexity of the likelihood estimation, we approxi-
mate the autocovariance matrix K (which is a Toeplitz matrix K) with a circulant matrix
C. By definition a circulant matrix can be expressed as

Cij = c(i−j mod n)+1 (2.20)

we write C = Cn(c). All circulant matrices of dimension n can be diagonalized by the
unitary discrete Fourier transform matrix U = 1√

n
Fn:

Cn(c) = U†
ndiag(Fnc)Un = U†

ndiag(ĉ)Un, (2.21)

where † is the conjugate transpose. This implies that ĉ is the vector of eigenvalues of C,
and it is a vector with real entries. This makes calculation of inverse and determinant of C
extremely cheap, as is multiplication of C−1 by a vector x ∈ Rn, which simplifies to

C−1
n (c)x =

1

n
F†
n

(
x̂

ĉ

)
(2.22)

where the vector in brackets is the component-wise quotient of the vectors Unx and Fnc.

2.6.3 Circulant approximation
The task is now to find a circulant matrix which is as close as possible to the covariance
matrix K. This can be formalized as the following minimization problem:

C = argmin
D circulant

DKL (N (m,K)||N (m,D)) , ∀m (2.23)
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2. A Statistical Model for in vivo Neuronal Dynamics

where N denotes a multivariate Gaussian with specified mean vector and covariance matrix.
This problem has the unique solution

ci =
1

n
{(n− i+ 1)ki + (i− 1)kn−i+2} , 1 ≤ i ≤ n, kn+1 ≡ 0 (2.24)

Proof: The Kullback-Leibler divergence between two Gaussians is given by

DKL (N (m,K)||N (m,C)) =
1

2

[
tr(C−1K)− log det(C−1K)

]
− n

2
(2.25)

We have
C−1 = U†

ndiag
(
1

ĉ

)
Un, detC−1 =

n∏
i=1

1

ĉi
(2.26)

and hence

DKL (N (m,K)||N (m,C)) =
1

2

n∑
i=1

[
(UnKU

†
n)ii

ĉi
+ log ĉi

]
+ const. (2.27)

where the constant does not depend on c. We obtain the derivative

∂

∂ci
DKL (N (m,K)||N (m,C)) =

1

2ĉi

[
1− (UnKU

†
n)ii

ĉi

]
= 0 (2.28)

and therefore, at the stationary point we have

ĉi = (UnKU†
n)ii

ci =
1

n2

n∑
j,l,m=1

(F†
n)ij(Fn)jlKlm(F†

n)mj

=
1

n2

n∑
j,l,m=1

Klm exp
[
2πI

n
(−(i− 1)(j − 1) + (j − 1)(l − 1)− (m− 1)(j − 1))

]

=
1

n2

n∑
j,l,m=1

k|l−m|+1 exp
[
2πI

n
(j − 1)(l −m+ 1− i)

]
(2.29)

The sum of roots of unity over j only gives a non-zero value if the integer q = l−m+1− i
is a multiple of n. Since q has a maximum of q = n − 1 when l = n,m = i = 1 and a
minimum of q = 2 − 2n when l = 1,m = i = n, only q = 0 and q = −n are eligible.
Hence,

ci =
1

n2

n∑
l,m=1

nk|l−m|+1 (δ0,l−m+1−i + δ−n,l−m+1−i)

=
1

n

n−1∑
r=−n+1

(n− |r|)k|r|+1 (δi−1,r + δi−1,n+r)

=
1

n
{(n− i+ 1)ki + (i− 1)kn−i+2} , kn+1 ≡ 0

(2.30)

The second equality is obtained by reparametrizing r = l −m. □
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2.6.4 Sampling using FFTs
In order generate a sample u of length n from a multivariate Gaussian with mean vector m
and circulant covariance matrix C = Cn(c), one generates a zero-mean white noise vector
x with unit variance and then uses FFTs to compute u, i.e.

u = m+
1

n
F†
n

[
(ĉ)1/2 x̂

]
= m+

1

n
Cn

(
F†
n (ĉ)

1/2
)
x (2.31)

as the following calculation shows, the covariance comes out correctly⟨
(u−m)(u−m)T

⟩
=

1

n2
Cn

(
F†
n (ĉ)

1/2
)⟨

xxT
⟩
Cn

(
F†
n (ĉ)

1/2
)T

=
1

n
Cn

(
F†
nĉ
)
= Cn(c) = C

(2.32)

2.6.5 Optimization method
The optimization scheme used is a quasi-Newton method, where the vector of parameters
Θ is updated according to

Θ(k+1) = Θ(k) −B(k)∇f
(
Θ(k)

)
(2.33)

where f is the function to be minimized (e.g. − log p(usom, s)), ∇f is the gradient, and the
matrix B is chosen to be

B(k) =

{
H−1

f

(
Θ(k)

)
, if Hf

(
Θ(k)

)
positive definite

γ(k)G−1, else
(2.34)

Where Hf is the Hessian of f , γ(k) denotes a learning rate, and G is a metric tensor on the
parameter space which is used to rescale the parameters to lie in similar ranges. The learning
rate γ(k) < 0 is increased when the previous step was successful (typically, by 10 percent),
and reduced when the optimizer either runs into boundaries of the admissible parameter
region or increases the value of the function (we used a reduction by a factor of 2).

Below, we derive the formulae for the gradient and Hessian required for the optimiza-
tion. The derivations hold for the case where the GP covariance function k is parametrized
arbitrarily by θi and the spike-shape kernel and adaptation kernel are given by linear com-
binations of basis functions α(k), k = 1, ..., na and η(k), k = 1, ..., nw respectively.

2.6.6 Gradient
The likelihood function has the form

log p(usom, s) =
n∑

i=1

[
− 1

2
log(2πĉi)−

1

2n

|ûi|2

ĉi

+ si log qi + (1− si) log [1− qi]

]
,

(2.35)

where
qi = ∆teβui+Ai+log r0 (2.36)
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is the probability of a spike in bin i and depends on all parameters except the ones that
parametrize the covariance function k. The membrane potential is given implicitly by

u = usom − ur − α ∗ s. (2.37)

It is worthwhile to write the derivatives of log p in the following form:

d log p(usom, s) =
n∑

i=1

[
− 1

2

(
1

ĉi
− 1

n

|ûi|2

ĉ2i

)
dĉi

− 1

nĉi
ℜ{û∗i dûi}+

si − qi
qi(1− qi)

dqi

]
,

(2.38)

Now, let us evaluate all the terms one by one. The Fourier transform of the circulant covari-
ance c only depends on the GP kernel parameters θ, i.e.

dĉi =
∂ĉi
∂θk

dθk =

nk∑
k=1

(
∂̂c

∂θk

)
i

dθk. (2.39)

Let us turn to the q terms next. Their differential is

dqi =
∂qi
∂ui

dui +
∂qi
∂Ai

dAi +
∂qi
∂r0

dr0 +
∂qi
∂β

dβ

= qi(βdui + dAi + d log r0 + uidβ),

(2.40)

where by (2.2) and using the fact that α is a linear combination of basis kernels
∑nα

k=1 akα
(k)

dui = −dur −
nα∑
k=1

S
(k)
i dak, S

(k)
i = (α(k) ∗ s)i. (2.41)

Moreover, Ai is also a linear combination, so

dAi =

nη∑
k=1

A
(k)
i dwk, A

(k)
i = (η(k) ∗ s)i. (2.42)

Therefore (2.40) can be written as

dqi = qi

(
−βdur − β

nα∑
k=1

S
(k)
i dak +

nη∑
k=1

A
(k)
i dwk + d log r0 + uidβ

)
, (2.43)

Lastly, by (2.41) we also have

dûi = −nδ1idur −
nα∑
k=1

Ŝ
(k)
i dak. (2.44)

Using
vi =

si − qi
1− qi

, (2.45)
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all the previous results can be regrouped to yield

d log p(usom, s) =
n∑

i=1

[
−1

2

(
1

ĉi
− 1

n

|ûi|2

ĉ2i

)
nk∑
k=1

(
∂̂ĉi
∂θk

)
i

dθk

+

nα∑
k=1

(
1

nĉi
ℜ
{
û∗i Ŝ

(k)
i

}
− βS

(k)
i vi

)
dak

+

nη∑
k=1

A
(k)
i vidwk

+vid log r0
+uividβ

+

(
δ1i
ĉi

ℜ{ûi} − βvi

)
dur

]
,

(2.46)

2.6.7 Hessian
For the Hessian, we mainly need the following

− 1

2
d

(
1

ĉi
− 1

n

|ûi|2

ĉ2i

)
= −1

2

(
1

ĉ2i
− 2

n

|ûi|2

ĉ3i

)
dĉi +

1

nĉ2i
ℜ{û∗i dûi} , (2.47)

d

(
1

nĉi
ℜ
{
û∗i Ŝ

(k)
i

})
= − 1

nĉ2i
ℜ
{
û∗i Ŝ

(k)
i

}
dĉi +

1

nĉi
ℜ
{
Ŝ
∗(k)
i dûi

}
, (2.48)

dvi = d

(
si − qi
1− qi

)
=

si − 1

(1− qi)2
dqi =

ξi
qi
dqi, (2.49)

where
ξi
qi

=
si − 1

(1− qi)2
. (2.50)

The components of the Hessian matrix are computed as follows

∂2 log p(usom, s)

∂θk∂θl
= −1

2

n∑
i=1

{
∂2ĉi

∂θk∂θl

[
1

ĉi
− 1

n

∣∣∣∣ ûiĉi
∣∣∣∣2
]

− ∂ĉi
∂θk

∂ĉi
∂θl

[
1

ĉ2i
− 2

n

|ûi|2

ĉ3i

]}
,

(2.51)

∂2 log p(usom, s)

∂θk∂al
= − 1

n

n∑
i=1

∂ĉi
∂θk

ℜ

{
û∗i Ŝ

(l)
i

ĉ2i

}
, (2.52)

∂2 log p(usom, s)

∂θk∂ur
= −∂ĉ1

∂θk
ℜ
{
û1
ĉ21

}
, (2.53)

∂2 log p(usom, s)

∂θk∂wk
=

∂2 log p(usom, s)

∂θk∂r0
=

∂2 log p(usom, s)

∂θk∂β
= 0, (2.54)
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∂2 log p(usom, s)

∂ak∂al
=

n∑
i=1

[
− 1

n
ℜ

{
Ŝ
∗(k)
i Ŝ

(l)
i

ĉi

}
+ β2S

(k)
i S

(l)
i ξi

]
, (2.55)

∂2 log p(usom, s)

∂ak∂wl
= −β

n∑
i=1

S
(k)
i A

(l)
i ξi, (2.56)

∂2 log p(usom, s)

∂ak∂ur
= −ℜ

{
Ŝ
(k)
1

ĉ1

}
+ β2

n∑
i=1

S
(k)
i ξi, (2.57)

∂2 log p(usom, s)

∂ak∂ log r0
= −β

n∑
i=1

S
(k)
i ξi, (2.58)

∂2 log p(usom, s)

∂ak∂β
= −β

n∑
i=1

S
(k)
i ξiui, (2.59)

∂2 log p(usom, s)

∂wk∂wl
=

n∑
i=1

A
(k)
i A

(l)
i ξi, (2.60)

∂2 log p(usom, s)

∂wk∂ur
= −β

n∑
i=1

A
(k)
i ξi, (2.61)

∂2 log p(usom, s)

∂wk∂ log r0
=

n∑
i=1

A
(k)
i ξi, (2.62)

∂2 log p(usom, s)

∂wk∂β
=

n∑
i=1

A
(k)
i ξiui, (2.63)

∂2 log p(usom, s)

∂u2r
= − n

ĉ1
+ β2

n∑
i=1

ξi, (2.64)

∂2 log p(usom, s)

∂ur∂ log r0
= −β

n∑
i=1

ξi, (2.65)

∂2 log p(usom, s)

∂ur∂β
= −

n∑
i=1

[vi + βuiξi] , (2.66)

∂2 log p(usom, s)

∂(log r0)2
=

n∑
i=1

ξi, (2.67)

∂2 log p(usom, s)

∂ log r0∂β
=

n∑
i=1

uiξi, (2.68)

∂2 log p(usom, s)

∂β2
=

n∑
i=1

u2i ξi. (2.69)

The components as given by equations (33-51) are then combined to form the Hessian
matrix Hf , which is used in Eq. (2.34).
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Figure 2.7: S2 Fig. Supplementary Figure. Comparison of in vivo and artificial data
snippets for datasets D3 and D4, analogous to Fig. 3G,H. The scale (shown on panel D) is
the same for all four panels. Vertical lines are drawn at the spiking times. (A) A 2-second
sample of in vivo activity from dataset D3 (Zebra Finch HVC). (B) Artificial data sampled
from AGAPE with parameters learned from dataset D3. (C) A 2-second sample of in vivo
activity from dataset D4 (mouse visual cortex). (D) Artificial data sampled from AGAPE
with parameters learned from dataset D4.
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Figure 2.8: S3Fig. SupplementaryFigure. The fitting result as a function of the parameter
δ for datasetD1, see color code next to the plot of the marginal distribution ofu in the second
row of the left column. The top left panel shows that the log likelihood peaks at δ = 18
ms, and the bottom right panel shows the decrease of the effective coupling stength as δ
increases.
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Figure 2.9: S4Fig. SupplementaryFigure. The fitting result as a function of the parameter
δ for datasetD3, see color code next to the plot of the marginal distribution ofu in the second
row of the left column. The top left panel shows that the log likelihood peaks at δ = 12
ms, and the bottom right panel shows the decrease of the effective coupling stength as δ
increases.
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Figure 2.10: S5 Fig. Supplementary Figure. The fitting result as a function of the param-
eter δ for dataset D4, see color code next to the plot of the marginal distribution of u in
the second row of the left column. The top left panel shows that the log likelihood peaks at
δ = 32 ms, and the bottom right panel shows the decrease of the effective coupling stength
as δ increases.
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Extensions of a Functional Theory of Short-term
Plasticity 3

This chapter contains the contributions and extensions to the theory of short-term plasticity
of Pfister et al. (2009). We have reviewed the basic phenomenology and biophysics of short-
term synaptic plasticity in the Introduction, and we have summarized the main functional
roles which have been proposed for it, including the original theory of Pfister et al. (2009).
Here, we present a mathematical reformulation in terms of stochastic filtering theory which
sheds new light on the previous results. This leads to important extensions of the theory
and new predictions.

The mathematical parts of this chapter make heavy use of stochastic calculus and stochas-
tic filtering theory. Although very powerful and elegant, they may be scarcely accessible to a
lot of readers. We therefore encourage readers which are unfamiliar with these topics to take
a look at Appendix A.1, where we offer a brief review and references to relevant literature.

3.1 Mathematical Reformulation of the ‘Know Thy Neighbour’
Theory

The ‘Know Thy Neighbour’ (KTN) theory of short-term plasticity which we introduced
in Section 1.4 was originally formulated as recursive Bayesian inference problem in Pfister
et al. (2009), and the inference calculations were carried out in an approximate fashion and
in discrete time. In the end, the timestep was taken to zero in a delicate limit procedure,
leading to the main results. Here, we reformulate the mathematics of the theory using
filtering theory. This allows us to carry out the inference in continuous time and in an exact
way, leading to a stochastic partial differential equation for the posterior probability density.
Indeed, this method is by no means new, but goes back to a standard result of filtering
theory for diffusion process observations by Zakai (1969). The corresponding result for
point process observations was derived by Snyder (1972). Using this powerful formalism, we
will recover the results from the 2009 paper by using a Gaussian ansatz to solve the filtering
equation approximately. In addition, we obtain new insights into the filtering problem and
the estimation error which is incurred by using a Gaussian approximation.
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3.1.1 The filtering problem within the KTN theory
The KTN theory fits remarkably well into the setting of filtering theory. In this context, the
signal of interest is the membrane potential of the presynaptic neuron and we model it as a
diffusion processXt. The measurements are the spike train of the presynaptic neuron, which
we model as a counting processNt (counting the number of spikes which have occured since
time zero), which depends on the membrane potential. The synapse – having only access
to the presynaptic spikes, i.e. the measurement process Nt – has the task of extracting
information about the presynaptic membrane potential Xt. We will derive the optimal
Bayesian solution to this filtering problem, and then find a possible synaptic implementation
of this solution.

Let us now formalize this idea. As already noted, the presynaptic membrane potential
is modeled as a (one-dimensional) diffusion process, which is a solution to the Itô stochastic
differential equation (SDE)

dXt = a(Xt)dt+ b(Xt)dWt. (3.1)

Here, Wt denotes a standard Wiener process and the functions a and b are called drift and
diffusion terms. As a diffusion process, its one-time probability density π(x, t) satisfies the
Fokker-Planck equation (FPE)

∂tπ(x, t) = L†π(x, t), (3.2)

where
L† = −∂x [a(x)·] +

1

2
∂2
x

[
b2(x)·

]
(3.3)

is the Fokker-Planck operator of the diffusion process.
The spiking process is an inhomogeneous Poisson process– also called Cox process, see

Cox (1955) – the rate of which depends on the value of the membrane potential. The value
of the counting process Nt counts the numbers of spikes which have occured up to and
including time t and may be written as

Nt =
∞∑
n=1

H(t− Tn), (3.4)

where H is the Heaviside function (H(0) = 0) and Ti ≥ 0 are the spike arrival times. Let
g : R → R be a nonnegative function, called gain function. The probability of a certain
sequence of spikes reads

Nt −Nt′ ∼ Poisson
[∫ t

t′
g(Xs)ds

]
, (3.5)

which has to hold for all t > t′.
The subsequent derivations of the solution to the filtering problem will not depend on

the particular choice of the Fokker-Planck operator L† and the function g and are there-
fore much more general than the derivations in Pfister et al. (2009), which relied on the
assumptions in eqs. (3.30) and (3.31).
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3.1.2 Formal Solution of the Filtering Problem
As already mentioned, a full probabilistic solution of the filtering problem is one which
allows us to compute the posterior expectation, i.e. the expectation at time t conditioned
on the observations up to time t, of any function φ,

pt [φ] = E
[
φ(Xt)|N[0,t]

]
. (3.6)

If the posterior measure pt has a density p(x, t), all posterior expectations can be calculated
from it as

pt [φ] =

∫ ∞

−∞
p(x, t)φ(x)dx. (3.7)

The goal of this section1 is to derive an equation for the time-evolution of the posterior
density p(x, t), in a similar way as the FPE (3.2) is a time-evolution equation for the prior
probability density π(x, t). The equation we are looking for will depend on the measurement
process Nt, which provides additional information which is not included in the definition
of the signal process.

We begin by writing down the joint law2 of the process (Xt, Nt) in a time interval [0, t]
(we use the notation X[0,t] to denote the trajectory of X on the interval [0, t]), which reads

P
(
X[0,t], N[0,t]

)
= P

(
X[0,t]

)
P
(
N[0,t]|X[0,t]

)
= P

(
X[0,t]

)
exp
[
−
∫ t

0
g(Xs)ds

] ∏
0≤Tn≤t

g(Xtn).
(3.8)

Following the reference measure approach to nonlinear filtering (see App. A.1), we want to
change the measure to an alternate probability Q, which preserves the marginal distribution
of the processXt, but transforms the distribution ofNt into a homogeneous Poisson process
with rate g0 > 0. The new joint probability reads

Q
(
X[0,t], N[0,t]

)
= Q

(
X[0,t]

)
Q
(
N[0,t]

)
= Q

(
X[0,t]

)
exp [−g0t]

∏
0≤Tn≤t

g0.
(3.9)

The likelihood-ratio of the two joint distributions – also known as the Radon-Nikodym
derivative of the change of measure from Q to P – reads

Lt
.
=

P
(
X[0,t], N[0,t]

)
Q
(
X[0,t], N[0,t]

) =
P
(
N[0,t]|X[0,t]

)
Q
(
N[0,t]

)
= exp

[∫ t

0
(g0 − g(Xs)) ds

] ∏
0≤Tn≤t

g(XTn)

g0
.

(3.10)

The variable Lt has jumps at the arrival times Tn which are given by multiplication of Lt−

with g(XTn)/g0. In-between arrival times, Lt solves an ordinary differential equation L̇t =
(g0 − g(Xt))Lt. This can be summarized in terms of an SDE for Lt as

dLt =

(
g(Xt)

g0
− 1

)
Lt(dNt − g0dt), L0 = 1. (3.11)

1We are not asking for an explicit, closed-form solution for the posterior probability density p(x, t), which
would be much too hard. Note that even the FPE rarely admits a closed-form solution.

2We use the term ‘law’ loosely to mean the probability density of the trajectory of the process.
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The change of measure from P to Q is convenient because it allows us to derive an evolution
equation for the unnormalized measure

ρt [φ] = EQ

[
φ(Xt)Lt|N[0,t]

]
(3.12)

from which the normalized measure can be recovered through the so-called Kallianpur-
Striebel formula, a version of Bayes’ theorem

pt [φ] =
ρt [φ]

ρt [1]
. (3.13)

In order to compute the stochastic derivative of ρt, we note that the two factors under the
expectation do not share any stochastic terms dNt or dWt, and that therefore3

dρt [φ] = EQ

[
dφ(Xt)Lt

∣∣∣N[0,t]

]
+ EQ

[
φ(Xt)dLt

∣∣∣N[0,t]

]
. (3.14)

The first term can be simplified using Itô’s lemma,

dφ(Xt) = φ′(Xt)dXt +
1

2
φ′′(Xt)dX

2
t

= a(Xt)φ
′(Xt)dt+

1

2
b2(Xt)φ

′′(Xt)dt+O (dWt)

= (Lφ)(Xt)dt+O (dWt) .

(3.15)

In the third line, we recognized the combined operator acting on φ to be the generator L
of the process X ,

L = a(x)∂x +
1

2
b2(x)∂2

x, (3.16)

the adjoint of the Fokker-Planck operator L† of X , see Eq. (3.3). Under the measure Q
the dWt term does not contribute under the expectation because it is independent of N[0,t].
Therefore, we have

EQ

[
dφ(Xt)Lt

∣∣∣N[0,t]

]
= ρt [Lφ] dt. (3.17)

The second term of Eq. (3.14) can be calculated by substituting (3.11):

EQ

[
φ(Xt)dLt

∣∣∣N[0,t]

]
= EQ

[
φ(Xt)

(
g(Xt)

g0
− 1

)
Lt(dNt − g0dt)

∣∣∣N[0,t]

]
= EQ

[
φ(Xt)

(
g(Xt)

g0
− 1

)
Lt

∣∣∣N[0,t]

]
(dNt − g0dt)

=

(
1

g0
ρt [gφ]− ρt [φ]

)
(dNt − g0dt).

(3.18)

In the second line, we recognized that Nt is a Poisson process of rate g0 under the measure
Q and that therefore dNt is independent of N[0,t]. In the third line, we expressed the
expectations using Eq. (3.12). In summary, we can rewrite Eq. (3.14) as

dρt [φ] = ρt [Lφ] dt+
(

1

g0
ρt [gφ]− ρt [φ]

)
(dNt − g0dt). (3.19)

3We have EQ

[
φ(Xt)Lt|N[0,t]

]
= EQ

[
φ(Xt)Lt|N[0,T ]

]
for some T > t (see Xu (2011), Proposition

2.7), which means that the stochastic differential can be taken inside the expectation. Note that our derivation
of the filtering equation is merely heuristic, for a rigorous proof see Xu (2011), Theorem 2.9.
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Now, we may introduce an unnormalized posterior density ρ(x, t) with the property that

ρt [φ] =

∫ ∞

−∞
ρ(x, t)φ(x)dx. (3.20)

Using the same techniques as for the Fokker-Planck equation (see App. A.1.2), namely
by expressing all the unnormalized expectations in Eq. (3.19) as integrals of the form of
Eq. (3.20), integrating by parts and dropping the arbitrary functionφ, we obtain a stochastic
partial differential equation (SPDE) for the unnormalized posterior density, which reads

dρ(x, t) = L†ρ(x, t)dt+

(
g(x)

g0
− 1

)
ρ(x, t) (dNt − g0dt) . (3.21)

In order to obtain equations for the normalized density p(x, t) and measure pt[φ], we intro-
duce a normalization constant Zt,

Zt
.
= ρt[1] =

∫ ∞

−∞
ρ(x, t)dx, (3.22)

which according to Eq. (3.19) satisfies the SDE

dZt =

(
1

g0
ρt [g]− ρt [1]

)
(dNt − g0dt) (3.23)

The first term in the last line vanishes because the integrand is a total differential in x and
ρ(x, t) and its derivatives vanish at ±∞. By defining the posterior firing rate

γt = pt [g] =
ρt [g]

ρt [1]
(3.24)

we can write the SDE for Zt as

dZt =

(
γt
g0

− 1

)
Zt (dNt − g0dt) . (3.25)

From this follows that the SDE for the normalized measure reads

dpt [φ] = pt [Lφ] dt+ (pt [gφ]− pt [φ]) (dNt − pt [g] dt), (3.26)

and that therefore the SPDE for the normalized density takes the form

dp(x, t) = L†p(x, t)dt+

(
g(x)

γt
− 1

)
p(x, t) (dNt − γtdt) . (3.27)

We observe that the arbitrary firing rate g0, which was chosen for the process Nt under the
measure Q and which appeared in the equations for the unnormalized measure and density,
has now disappeared. The stochastic integro-differential equation for the conditional den-
sity (3.27) is comparable to the Kushner (1962) equation, which gives an analogous result
for the case of a diffusive measurement process.
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Remarks

The first published solution of the filtering problem with point process observations appears
to be due to Snyder (1972), who derived an evolution equation for the posterior character-
istic function

χ(k, t)
.
=

∫ ∞

−∞
p(x, t)eikxdx. (3.28)

The derivation shown here uses the change of measure approach and therefore closely fol-
lows the pioneering work of Zakai (1969) on a diffusion process signal and measurement,
which is also covered in standard books on filtering theory, such as Bain and Crişan (2009).
Applications of the method for point process observations are found e.g. in Kliemann et al.
(1990), Plienpanich (2007), Bobrowski et al. (2009) (which performs the calculation for a
finite-state signal process); Gertner (1978), Xu (2011) and Ceci and Colaneri (2012) (com-
bining point process observations with diffusive observations). See also the recent review by
Venugopal et al. (2014). Nowadays, the different cases are all under the umbrella of filtering
for semimartingales.

The filtering problem discussed here is remarkable for having been ‘reinvented’ again and
again in different applied fields, pointing to a lack of exchange of ideas between the fields
of stochastic analysis, signal processing etc. and applied fields such as machine learning and
neuroscience. Unfortunately, this sort of communication problem is by no means unique
to the case of filtering theory. Notable cases who do not seem to be aware of (or choose to
ignore) the full extent of the mathematical literature on the subject include Eden (2007),
Eden and Brown (2008), Pfister et al. (2009), Ujfalussy and Lengyel (2011a).

3.1.3 The approximate Gaussian filter of Pfister et al. (2009)
The formal solution to the filtering problem in Eq. (3.27) is a very powerful result but
hard to work with and implement because it is in essence infinite-dimensional; for each
value of x, Eq. (3.27) gives an SDE for the value of the posterior density at that point.
Finite-dimensional filters can be constructed e.g. by discretizing the state space – such as
in Bobrowski et al. (2009). As an alternative, one can try to find choices of the signal and
measurement process parameters for which exact or (good) approximate finite-dimensional
filters exist.

Here, we want to construct an approximate two-dimensional filter for a special filter-
ing problem considered in Pfister et al. (2009). They used an Ornstein-Uhlenbeck (OU)
process,

dXt = −θXtdt+ bdWt. (3.29)

The parameter θ is the inverse time-constant of the OU process. We also note the generator
and Fokker-Planck operator of the OU process

L = −θx∂x +
b2

2
∂2
x, L† = θ + θx∂x +

b2

2
∂2
x. (3.30)

Moreover, they assumed an exponential gain function

g(x) = g0 exp [βx] . (3.31)

44



3.1. Mathematical Reformulation of the ‘Know Thy Neighbour’ Theory

Pfister et al. (2009) found an (approximate) Gaussian solution to the filtering problem which
we would like to re-derive from the filtering equation (3.27). We therefore attempt a Gaus-
sian ansatz for the posterior probability density,

p̃(x, t) = N (x; µ̃t, σ̃
2
t ) ≡

1√
2πσ̃t

exp
[
−(x− µ̃t)

2

2σ̃2
t

]
. (3.32)

In the following, we will show three different derivations of the equations for µ̃t and σ̃2
t : the

assumed density filter in continuous time, a variational scheme, and a geometrical scheme.
All methods lead to the same results, but looking at the problem from different angles is
potentially interesting.

Continuous-time Gaussian assumed density filtering

Assumed density filtering (ADF, see e.g. Kushner (1967)) makes use of the evolution equa-
tions of the conditional moments, which are readily deduced from Eq. (3.26) by setting
φ(x) = xn. The equation for the conditional moment of order n, m(n)

t
.
= pt[X

n
t ], reads

dm
(n)
t = pt[LXn

t ]dt+

(
pt[g(Xt)X

n
t ]

pt[g(Xt)]
−m

(n)
t

)
(dNt − pt[g(Xt)]dt) . (3.33)

By assuming that the measure at time t is Gaussian and evaluating the right-hand sides of
these equations with pt = p̃t, where p̃t is a Gaussian measure, one finds evolution equations
for the first two moments, which can then be translated into evolution equations for the
mean and variance of the Gaussian. The modified mean and variance are then used for the
next time, where the measure is reset to a Gaussian measure with the evolved mean and
variance. For the specific Fokker-Planck operator and gain function above, we find

pt[LXn
t ] = −nθm

(n)
t +

b2n(n− 1)

2
θm

(n−2)
t

(3.34)

and

p̃t[g(Xt)] = γ̃t = g0e
βµ̃t+

1
2β

2σ̃2
t , (3.35)

p̃t[g(Xt)Xt] =
∂

∂β
γ̃t =

(
µ̃t + βσ̃2

t

)
γ̃t, (3.36)

p̃t[g(Xt)X
2
t ] =

∂2

∂β2
γ̃t =

[
σ̃2
t +

(
µ̃t + βσ̃2

t

)2]
γ̃t, (3.37)

p̃t[g(Xt)X
3
t ] =

∂3

∂β3
γ̃t =

[
3σ̃2

t

(
µ̃t + βσ̃2

t

)
+
(
µ̃t + βσ̃2

t

)3]
γ̃t, (3.38)

where µ̃t is the mean and σ̃2
t is the variance under the Gaussian measure. Using Eq. (3.33)

we therefore obtain

dm
(1)
t = −θµ̃tdt+ βσ̃2

t (dNt − γ̃tdt) , (3.39)

dm
(2)
t =

(
b2 − 2θm̃

(2)
t

)
dt+

(
µ̃t + βσ̃2

t

)2
(dNt − γ̃tdt) . (3.40)
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3. Extensions of a Functional Theory of Short-term Plasticity

The first of the above equations can be directly used for the time-evolution of the mean
by replacing the left-hand side by dµ̃t. The second equation has to be transformed into an
equation for the second centered moment,

C
(2)
t = m

(2)
t −

(
m

(1)
t

)2
, (3.41)

by noting (using dN2
t = dNt and dt dNt = 0) that

d
(
m

(1)
t

)2
= 2m

(1)
t dm

(1)
t + (dm

(1)
t )2

= −2θµ̃2
tdt+ 2βµ̃tσ̃

2
t (dNt − γ̃tdt) + β2σ̃4

t dNt,
(3.42)

such that we obtain (the dNt terms cancel out)

Ċ
(2)
t = −2θσ̃2

t + b2 − β2σ̃4
t γ̃t. (3.43)

We can therefore take

dµ̃t = −θµ̃tdt+ βσ̃2
t (dNt − γ̃tdt) , (3.44)

˙̃σ2
t = −2θσ̃2

t + b2 − β2σ̃4
t γ̃t, (3.45)

as evolution equations for the mean and variance of the Gaussian density. These equations
are the same as those derived in Pfister et al. (2009).

The problem with ADF is its lack of self-consistency. The above method of calculat-
ing the right-hand side of the moment equation by assuming a Gaussian density and then
assigning the result as a moment equation of the corresponding Gaussian moment breaks
down for the centered moment of order three,

C
(3)
t = m

(3)
t − 3m

(2)
t C

(2)
t −

(
m

(1)
t

)3
, (3.46)

for which one obtains the non-vanishing evolution equation

dC
(3)
t =

[
−3θC

(3)
t + C

(3)
t γ̃(t)− β3σ̃6(t)γ̃(t)

]
dt− C

(3)
t dNt, (3.47)

which is in direct contradiction to the identity

C̃
(3)
t = p̃t

[
(Xt − µ̃t)

3
]
= 0 (3.48)

for the centered moment of order three of a Gaussian. This contradiction makes the ADF
method unacceptable from a rigorous point of view4, but it also raises the question in what
sense the Gaussian moment equations obtained by the ADF method stand out from other
moment equations, i.e. what makes them special. In the following two approaches, we try
to answer this question.

4Lack of rigor does not imply lack of value as a heuristic method. As we will show later, the ADF here is
equivalent to a projection filter, which is fully rigorous.
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A variational approach

Another method – which avoids the inconsistencies of the ADF – is to use a variational
approximation of the posterior measure. Since we suspect that the Gaussian ansatz in
Eq. (3.32) does not solve Eq. (3.27), we introduce an error term ϵ which measures the
degree to which the filtering equation is violated:

dp̃(x, t) = L†p̃(x, t)dt+

(
g(x)

γ̃t
− 1

)
p̃(x, t) (dNt − γ̃tdt) + ϵ(x, t)p̃(x, t), (3.49)

where γ̃t is the posterior firing rate under the Gaussian ansatz,

γ̃t =

∫ ∞

−∞
g(x)p̃(x, t)dx = g0 exp

[
βµ̃t +

1

2
β2σ̃2

t

]
. (3.50)

In order to obtain the time-evolution of the mean and variance of the Gaussian part, which
have to take the form

dµ̃t = B11
t dt+B12

t dNt, (3.51)
dσ̃2

t = B21
t dt+B22

t dNt, (3.52)

we plug the ansatz for p̃ into (3.49) and try to match the coefficients of dNt and dt of both
sides (and for all x) while making ϵ(x, t) as small as possible. Let us first consider what
happens at the arrival time of a spike. Equation (3.49) demands that the posterior density
is multiplied by g(x)/γ̃t when a spike occurs, i.e.

p̃(x, t+) =
g(x)

γ̃t−
p̃(x, t−). (3.53)

Writing this out, we see that the Gaussian form is preserved,

N (x; µ̃t +B12
t , σ̃2

t +B22
t )

!
= exp

[
β(x− µ̃t)−

1

2
β2σ̃2

t

]
N (x; µ̃t, σ̃

2
t )

= N (x; µ̃t + βσ̃2
t , σ̃

2
t ),

(3.54)

and therefore we can match the mean and variance by picking B12
t = βσ̃2

t and B22
t = 0.

Substituting these coefficients back into Eq. (3.49) and solving for ϵ(x, t), all the dNt cancel
out and we obtain

ϵ(x, t) =
dp̃(x, t)− L†p̃(x, t)dt

p̃(x, t)
+ g(x)dt− γ̃tdt

=

{
x− µ̃t

σ̃2
t

(B11
t + θx) +

(x− µ̃t)
2 − σ2

t

2σ̃4
t

(B21
t − b2)− θ

+ g0 exp [βx]− g0 exp
[
βµ̃t +

1

2
β2σ̃2

t

]}
dt

≡ f(x, t)dt.

(3.55)

Since B11
t and B21

t cannot depend on x, they cannot be chosen such that ϵ(x, t) = 0 for
all x. Instead, we ask that the expectation of the square of f(x, t) under the Gaussian
distribution,

Et ≡
∫ ∞

−∞
f2(x, t)p̃(x, t)dx, (3.56)
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be minimized. Imposing this minimization criterion leads to the following result:

B11
t = −θµ̃t − βσ̃2

t γ̃t, B21
t = b2 − 2θσ̃2

t − β2σ̃4
t γ̃t. (3.57)

When we combine these results with the dNt terms found earlier, the equations for the
time-evolution of the parameters of p̃(x, t) read

dµ̃t = −θµ̃tdt+ βσ̃2
t (dNt − γ̃tdt), (3.58)

dσ̃2
t =

(
b2 − 2θσ̃2

t − β2σ̃4
t γ̃t
)
dt. (3.59)

Thus Eqs. (3.58,3.59) are the same as found by Pfister et al. (2009), as well as by the ADF
method above. They minimize the square of the error term in equation (3.49), which takes
a minimal value of order β3

ϵ(x, t) =

{
g(x)− γ̃t

[
1 + β(x− µ̃t) +

1

2
β2
(
(x− µ̃t)− σ̃2

t

)]}
dt

=
1

6
g0dt

[
(x− µ̃t)

3 − 3σ̃2
t (x− µ̃t)

]
β3 +O

(
β4dt

)
.

(3.60)

The minimized function in Eq. (3.56) takes the form

Et = γ̃2t

(
eβ

2σ̃2
t − 1− β2σ̃2

t −
1

2
β4σ̃4

t

)
= γ̃2t

∞∑
n=3

(
β2σ̃2

t

)n
n!

(3.61)

A geometrical picture

Even though the variational approach leads to the same results as the ADF method, the min-
imization criterion (3.56) remains somewhat arbitrary. As has been pointed out in Hanzon
and Hut (1991), ADFs with a Gaussian assumption can in some cases be regarded as pro-
jection filters, which were introduced in Brigo et al. (1998) and Brigo et al. (1999). We will
briefly explain the geometric framework of projection filters which not only improves our
understanding of the Gaussian approximation and approximation errors, but has the poten-
tial of being generalized to exponential families in order to obtain better approximations.

Consider the manifold M of density functions with respect to the Lebesgue measure
dx on the state space X of the signal process. The filtering equation (3.27) is an equation
for a piecewise-smooth curve c : R → M through the manifold. It has the form dp =
V (p)dt+ (ϕ(p)− p)dN and can therefore be characterized by the pair (V, ϕ), where V is
the vector field

V : M → TM,

p 7→ (L† + γ[p]− g)p, γ[p] =

∫
X
g(x)p(x)dx,

(3.62)

for the time evolution in-between observation events, where c is smooth and tangent to V ,
i.e. c′(t) = V (c(t)). At the arrival time of an observation, the curve has a discontinuity
and jumps from c(t−) to c(t+) = ϕ(c(t−)), where ϕ is the map defined by

ϕ : M → M,

p 7→ g(·)p(·)∫
X g(x)p(x)dx

.
(3.63)
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The manifold M is infinite-dimensional, but we can consider a finite-dimensional subman-
ifold S ⊂ M, e.g. the manifold of Gaussian densities on X , or – more generally – an
exponential family of probability distributions. Given this submanifold, we attempt to re-
duce the equation for the curve in M to an equation for a curve in S. Suppose the curve
starts in S, i.e. p0 = c(0) ∈ S. Then in general, the vector V (p0) is not an element of
Tp0S, and ϕ(p0) lies outside of S. In order to project the two quantities onto S we there-
fore require a metric D on M. It induces a Riemannian metric G, in terms of which we
can define a projection Πp : TpM → TpS for each p ∈ S and therefore a projected vector
field

Ṽ : S → TS,
p 7→ Πp(V (p)).

(3.64)

By using the metric D, we can also define what is the closest point to ϕ(p0) within S and
therefore a map

ϕ̃ : S → S,
p 7→ argmin

q∈S
D(ϕ(p), q). (3.65)

The equation for the curve inside the submanifold S is then determined by the pair (Ṽ , ϕ̃).
Let us make things more concrete by specifying a distance measure in M. We will work
with the Hellinger distance

D : M×M → R,

D(p, q) =

∫
X

(√
p(x)−

√
q(x)

)2
dx.

(3.66)

In order to construct a Riemannian metric on the tangent space, it is necessary to go to the
space M1/2 =

{
p1/2|p ∈ M

}
of the square roots of the densities in M, which is a subset

of L2. The tangent space TpM1/2 will therefore be a vector subspace of L2 and we can use
the L2 scalar product as a Riemannian metric:

Gp(X,Y ) =

∫
X
X(x)Y (x)dx, X, Y ∈ TpM1/2. (3.67)

The difference between M and M1/2 is but a change of coordinates and the Riemannian
metric can also be expressed in the coordinates of TpM as

Gp(X,Y ) =
1

4

∫
X

X(x)Y (x)

p(x)
dx, X, Y ∈ TpM, (3.68)

or in the coordinates of logM = {log p|p ∈ M} as

Gp(X,Y ) =
1

4

∫
X
p(x)X(x)Y (x)dx

=
1

4
Ep [XY ] , X, Y ∈ Tp logM.

(3.69)

This representation in terms of the expectation operator is the most convenient one for cal-
culations, but of course all the representations lead to the same result. Let θ = (θ1, ..., θm)
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be a parametrization of S, p(·, θ) ∈ S and E1, ..., Em the associated coordinate basis of
TpS given by the functions

Ei(x) =
∂p(x, θ)

∂θi
, i = 1, ...,m. (3.70)

The Riemannian metric restricted on the submanifold yields a metric tensor

Gij = Gp(Ei, Ej) =
1

4

∫
X

1

p(x)

∂p(x, θ)

∂θi
∂p(x, θ)

∂θj
dx

=
1

4

∫
X
p(x)

∂ log p(x, θ)
∂θi

∂ log p(x, θ)
∂θj

dx,

(3.71)

which is proportional to the Fisher information matrix. The projection operator onto TpS
can be written in that basis as

Πp(X) = GijGp(X,Ei)Ej , X ∈ TpM, (3.72)

where Gij is the inverse of the metric tensor, i.e. GijGjk = δik (we use the Einstein summa-
tion convention for repeated indices). The quality of the projection filter can be measured
by two quantities. The first is the projection residual V (p)− Ṽ (p) and its squared norm

EV (p) =
∥∥∥V (p)− Ṽ (p)

∥∥∥2 = Gp

(
V (p)− Ṽ (p), V (p)− Ṽ (p)

)
, p ∈ S (3.73)

where Gp denotes the Riemannian metric at p. We will see that this is the quantity which
was minimized in the last section. The second quantification of the filter quality is the jump
error

Eϕ(p) = D
(
ϕ(p), ϕ̃(p)

)
, p ∈ S. (3.74)

The approximate Gaussian filter as a projection filter

Let us now calculate the projection filter for the case in which

S =
{
N (µ, σ2)|µ ∈ R, σ2 > 0

}
(3.75)

is the two-dimensional manifold of Gaussian distributions on R. In this case, as we noted
earlier, the submanifold is mapped onto itself, i.e. ϕ(S) = S, and therefore we can set
ϕ̃ = ϕ, making the jump error vanish. We then only have to consider the smooth part of
the filter. Let us start at a point p = N (µ, σ2) ∈ S. The vector that is to be projected reads

V (x) = (L† + γ[p]− g(x))N (x;µ, σ2)

= −θxE1(x) + b2E2(x) +

[
θ + g0e

βµ+
1
2β

2σ2

− g0e
βx

]
N (x;µ, σ2),

(3.76)

where we introduced the two basis vectors of TpS

E1(x) =
∂N (x;µ, σ2)

∂µ
=

x− µ

σ2
N (x;µ, σ2),

E2(x) =
∂N (x;µ, σ2)

∂σ2
=

(x− µ)2 − σ2

2σ4
N (x;µ, σ2),

(3.77)
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in the chosen (µ, σ2) parametrization of S. The Riemannian metric tensor can be calculated
from Eq. (3.68)

G11 = Gp(E1, E1) =
1

4

∫ ∞

−∞

(x− µ)2

σ4
N (x;µ, σ2)dx =

1

4σ2
,

G12 = G21 = Gp(E1, E2) =
1

4

∫ ∞

−∞

(x− µ)3 − σ2(x− µ)

σ6
N (x;µ, σ2)dx = 0,

G22 = Gp(E2, E2) =
1

4

∫ ∞

−∞

[
(x− µ)2 − σ2

2σ4

]2
N (x;µ, σ2)dx =

1

8σ4
,

(3.78)

and as we expected the metric tensor is – up to a factor of 1/4 – equal to the Fisher in-
formation matrix. We can now calculate the projection of V onto the basis vectors and
find

Ṽ = G11Gp(V,E1)E1 +G22Gp(V,E2)E2+

=
(
−θµ− βσ2γ

)
E1 +

(
b2 − 2θσ2 − β2σ4γ

)
E2,

(3.79)

which is consistent with the equations found earlier. The projection residual V − Ṽ reads

V (x)− Ṽ (x) = −N (x;µ, σ2)

{
g(x)− γ

[
1 + β(x− µ) +

1

2
β2
(
(x− µ)− σ2

)]}
,

(3.80)
where the bracketed expression is the same as the one computed in (3.60). This means that
the function Et in Eq. (3.56) indeed was the squared norm of the projection residual.

Numerical solution of the filtering equation

In order to obtain the exact moments, one has to solve the unnormalized filtering equation
(3.21), which in the absence of spikes and for the present case reduces to the following
partial differential equation (PDE)

∂tρ(x, t) =

(
θ + g0 − g0e

βx + θx∂x +
b2

2
∂2
x

)
ρ(x, t). (3.81)

In order to solve this PDE numerically, it is convenient to transform the spatial domain to
lie in a bounded interval, i.e. to do a transformation ϕ defined e.g. by5

ϕ : (−1, 1) → R, y 7→ ϕ(y) = log
[
1/β

1− y

]
− log

[
1/β

1 + y

]
, (3.82)

such that the unnormalized density may be described in terms of the transformed density
v(·, t) : (−1, 1) → R, y 7→ v(y, t) = ϕ′(y)ρ(ϕ(y), t). (3.83)

Using the chain rule, one can derive a PDE for v(y, t) which takes the form

∂tv(y, t) =

[
θ + g0 − g0e

βϕ(y) − θϕ(y)ϕ′′(y)

ϕ′(y)2
−

θb2
(
ϕ′′′(y)ϕ′(y)− 3ϕ′′(y)2

)
ϕ′(y)4

+ θ
ϕ(y)ϕ′(y)2 − 3b2ϕ′′(y)

ϕ′(y)3
∂y +

θb2

ϕ′(y)2
∂2
y

]
v(y, t), (3.84)

5Other transformations may be chosen, but they must satisfy ϕ′(y) > 0, ∀y, and they must be tested for
stability. The transformation given in Eq. (3.82) seems to lead to stable behavior of the numerical integration.
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3. Extensions of a Functional Theory of Short-term Plasticity

and the boundary conditions read v(−1, t) = v(1, t) = 0, ∀t ≥ 0. Equation (3.84) can
be integrated with standard PDE solvers (e.g. as built into Wolfram Mathematica). Spike
arrivals are implemented by stopping the numerical integration at the spike arrival time T ,
multiplying the function v(y, T ) by the gain function g0e

βϕ(y) and restarting the numerical
integration at T with the new initial condition. Posterior expectations can be obtained via
the formula

pt[φ] =
1

Zt

∫ 1

−1
φ(ϕ(y))v(y, t)dy, Zt =

∫ 1

−1
v(y, t)dy, (3.85)

where these integrals are done numerically by using the discretized representation of v(y, t).
In order to check whether this PDE method yields the correct result, one can compare it to
the results from a sequential Monte-Carlo (SMC) method (i.e. a particle filter).

Deviation of the Gaussian approximation from the exact posterior distribution

The above derivations show that the Gaussian distribution only solves the filtering equation
up to an error term ϵ given in Eq. (3.60), which can be geometrically interpreted as a projec-
tion residual. We can also investigate the deviation of the exact posterior moments to the
moments of the Gaussian approximation. Here, we will look at the first three moments, ex-
pressed as the mean µt, the variance σ2

t and the third centered moment (or third cumulant)
C

(3)
t . Both the stationary values of these moments (i.e. in the absence of spikes) and the

values of the moments immediately after a spike (with no spikes beforehand) deviate from
the approximated Gaussian solutions. The deviations increase with β, as suggested by the
error term in Eq. (3.60).

We computed the first three moments using the exact, SMC, and approximate6 Gaus-
sian methods and show them on Fig. 3.1 as a function of β (choosing g0 such as to keep the
expected firing rate constant). The most important difference between the exact moments
and the approximate ones is that the variance σ2 of the Gaussian approximation, which
does not have a dNt term according to Eq. 3.59, does not change after a spike, whereas the
variance of the exact posterior jumps upon a spike.

6The approximate moments are obtained from Eqs. (3.58,3.59) for the mean and variance, and Eq. (3.47)
for the third cumulant. The third cumulant of the Gaussian is of course zero, but Eq. (3.47) provides a hint that
the inconsistency is of the same order of magnitude as the third cumulant of the exact posterior distribution.
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Figure 3.1: Approximation errors of the approximate Gaussian filter in calculating the
mean µt (top panel), variance σ2

t (center panel) and third cumulant C(3)
t (bottom panel) of

the posterior distribution. Solid lines: stationary value in the absence of spikes. Dashed
lines: value immediately after a spike, with no spikes beforehand. Black lines: Numeri-
cal solution of the PDE (3.81). Blue lines: Particle filter. Red lines: Gaussian filter from
Eqs. (3.58,3.59), and the ‘wrong’ third cumulant of Eq. (3.47). The particle filter agrees
with the PDE results. The Gaussian approximations shows deviations from the exact mo-
ments which increase with β. Most notable is the fact that according to the exact solution,
σ2 changes after a spike (i.e. the solid and the dashed lines in the center panel differ for
the exact solution shown in black), whereas it does not change according to the Gaussian
approximation (i.e. the red solid and dashed lines of the center panel coincide). Parameter
values: θ = 0.1, b2 = 0.2, g0 = 0.01e−β2/2.
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3.2 Extensions I
The derivations of the filtering equation in Section 3.1.2 were carried out for a one-dimen-
sional diffusion signal and an inhomogeneous Poisson process measurement, but there is
a number of extensions which can be made to that model such that the filtering problem
remains tractable. In this section, we are going to look at two such extensions.

The inclusion of adaptive mechanisms in the point process observation model is an im-
portant extension of the theory. Fortunately, the filtering problem does not become much
harder even though the resulting filter has new properties. In the context of neuroscience,
the extension is motivated from a simple observation, namely that neurons show refractory
and adaptive effects in their firing rates and that therefore firing properties are not ade-
quately described by a Poisson process (see Chapter 3, which offers a detailed analysis of
this problem). The extension leads – for a certain range of parameters – to a prediction of
short-term facilitation in the downstream synapse in order to compensate for the expected
reduction in the presynaptic firing rate following a spike. We will discuss the predictions
due to this mechanism in Section 3.4.

Another extension which we will present here is the generalization of the signal process
to a multivariate diffusion process and of the observation to a multivariate point process,
both of which are straightforward in the framework of filtering theory. These extensions
allow the KTN theory to be formulated for multiple presynaptic inputs, multi-component
membrane potentials (e.g. with fast and slow timescales), and higher-order Gauss-Markov
processes, which approximate certain Gaussian processes. Through these mathematical
tools, predictions can be made based on the neuron model presented in Chapter 3, and
the problem of target-cell specificity can be addressed (see Section 3.5.2 for further ideas
on this subject).

3.2.1 Adaptive point process observations
What happens if we want to make the gain function g adaptive, i.e. depend on the previous
history of spikes? We also include an explicit time dependence, i.e.

g(Xt) −→ g
(
Xt, N[0,t], t

)
, (3.86)

such that the number of spikes observed in a certain time interval is no longer independent
(conditioned on Xt) of the number of spikes observed in any previous interval

Nt −N0 ∼ Poisson
[∫ t

0
g(Xs, N[0,s], s)ds

]
. (3.87)

The resulting process is no longer a renewal process, therefore we call it adaptive point process7.
The expression for the conditional law of Nt reads8

P
(
N[0,t] jumps at t1, ..., tn|X[0,t]

)
= exp

[
−
∫ t

0
g(Xs, {ti ≤ s} , s)ds

]
×

∏
0≤tn≤t

g(Xtn , {ti ≤ tn} , tn). (3.88)

7This sort of process is sometimes called self-exciting point process or Hawkes process, see e.g. Hawkes
(1971), Gerencsér et al. (2008), and Chen and Hall (2015) and references therein.

8One might wonder whether this expression is normalized. We prove in Appendix A.3 that it is.
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After having checked that the expression for the probability of a sequence of spikes in
Eq. (3.88) looks the same as for the previously used renewal case, we can verify that the
derivation of the filtering equation remains basically unaltered as well. The equation for
the Radon-Nikodym derivative in Eq. (3.11), for instance, is the same and therefore all the
steps that follow it can be carried out as before. We therefore obtain the following filtering
equation for the adaptive point process measurements

dp(x, t) = L†p(x, t)dt+

(
g
(
x,N[0,t], t

)
γt

− 1

)
p(x, t) (dNt − γtdt) , (3.89)

where now γt depends on the previous observations,

γt =

∫ ∞

−∞
g
(
x,N[0,t], t

)
p(x, t)dx. (3.90)

Also the Gaussian approximate filter for the OU signal and exponential gain function can
be easily extended to the adaptive point process. If we parametrize the adaptive effect on
the gain function as

g
(
x,N[0,t], t

)
= g0 exp [βtx+At] , (3.91)

where At and βt depend on the spike history N[0,t], we can write the equations for the
parameters of the Gaussian approximation as

dµ̃t = −θµ̃tdt+ βtσ̃
2
t (dNt − γ̃tdt), (3.92)

dσ̃2
t =

(
b2 − 2θσ̃2

t − β2
t σ̃

4
t γ̃t
)
dt, (3.93)

which are identical to eqs. (3.58) and (3.59), except for the fact that the posterior expected
firing rate depends on A,

γ̃t = g0 exp
[
βtµ̃t +

1

2
β2
t σ̃

2
t +At

]
. (3.94)

We call At, βt adaptation variables.

3.2.2 Multivariate diffusion prior
We want to generalize the filtering equation to a multivariate diffusion signal

dXt = a(Xt)dt+ b(Xt)dW t, (3.95)

where Xt is an Rn-valued random variable, W t is a n-vector-valued standard Wiener
process, a is a function from Rn to Rn, and b a map from Rn into the space of n × n-
matrices. The gain function is now a map from Rn to R+, potentially including adaptation
effects (see previous section). All the steps in Section 3.1.2 apply for the multivariate case
by replacing scalars with vectors and derivatives by partial derivatives. Carrying out all the
steps, one finds that the filtering equation reads

dp(x, t) = L†p(x, t)dt+

(
g
(
x, N[0,t], t

)
γt

− 1

)
p(x, t) (dNt − γtdt) , (3.96)
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where
γt =

∫
Rn

g
(
x, N[0,t], t

)
p(x, t)dx, (3.97)

and L† denotes the Fokker-Planck operator of the multivariate diffusion,

L† = −
n∑

i=1

∂

∂xi
[ai(x)·] +

1

2

n∑
i,j,k=1

∂2

∂xi∂xj
[bik(x)bjk(x)·] . (3.98)

For the special case of a multivariate OU process,

dXt = −AXtdt+ BdW t, (3.99)

where A,B are n× n-matrices, and an exponential gain function

g
(
x, N[0,t], t

)
= g0 exp

[
β⊤
t x+At

]
, (3.100)

we can find a multivariate Gaussian approximation of the posterior density

p̃(x, t) = N (x; µ̃t, Σ̃t) ≡
(
det(2πΣ̃t)

)−1/2
exp
[
−(x− µ̃t)

⊤Σ̃−1
t (x− µ̃t)

]
, (3.101)

which solves the diffusion equation up to a term ϵ

dp̃(x, t) = L†p̃(x, t)dt+

(
g
(
x, N[0,t], t

)
γ̃t

− 1

)
p̃(x, t) (dNt − γ̃tdt) + ϵ(x, t)p̃(x, t).

(3.102)
As in the corresponding scalar case (see Section 3.1.3), the dNt term of ϵ vanishes because
the Gaussian is preserved by multiplication of an exponential. By minimizing a function
analogous to the one in Eq. (3.56), we find the time-evolution of the parameters of p̃ to be
given by

dµ̃t = −Aµ̃tdt+ Σ̃tβt(dNt − γ̃tdt), (3.103)

dΣ̃t =
(
BB⊤ −AΣ̃t − Σ̃tA⊤ − γ̃tΣ̃tβtβ

⊤
t Σ̃t

)
dt, (3.104)

where the posterior firing rate is given by

γ̃t = g0 exp
[
β⊤
t µ̃t +

1

2
β⊤
t Σ̃tβt +At

]
. (3.105)

3.2.3 Multivariate point process observations
The scalar or multivariate diffusion signal may be observed through multiple – say, m –
conditionally independent point process measurements N (i), each coupled to the signal
through a gain function gi. In neuroscience, this could apply in the context of spike inputs
from multiple presynaptic neurons converging in the postsynaptic dendrite. Fortunately,
the derivation in Section 3.1.2 is easily generalizable to this scenario.
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We begin by noting that the joint probability of the signal and observation takes the
form,

P
(
X [0,t],N [0,t]

)
= P

(
X [0,t]

)
P
(
N [0,t]|X [0,t]

)
= P

(
X [0,t]

) m∏
i=1

P
(
N

(i)
[0,t]|X [0,t]

)
= P

(
X [0,t]

) m∏
i=1

exp
[
−
∫ t

0
gi(Xs)ds

] ∏
0≤t

(i)
n ≤t

gi

(
X

t
(i)
n

)
.

(3.106)

We omit the adaptive notation gi(Xt, N
(i)
[0,t], t) in the understanding that the derivation is

not modified by adding adaptation. The Radon-Nikodym derivative of going to a measure
Q where all processes are Poisson with rate g0 reads

Lt ≡
P
(
X [0,t],N [0,t]

)
Q
(
X [0,t],N [0,t]

) =

m∏
i=1

exp
[∫ t

0
(g0 − gi(Xs)) ds

] ∏
0≤t

(i)
n ≤t

gi

(
X

t
(i)
n

)
g0

, (3.107)

but it now satisfies a modified SDE

dLt =

m∑
i=1

(
gi(Xt)

g0
− 1

)
Lt(dN

(i)
t − g0dt), L0 = 1. (3.108)

From then on, all steps can be carried out as in Section 3.1.2, finally giving us a filtering
equation that reads

dp(x, t) = L†p(x, t)dt+
m∑
i=1

(
gi
(
x, N[0,t], t

)
γ
(i)
t

− 1

)
p(x, t)

(
dN

(i)
t − γ

(i)
t dt

)
, (3.109)

where
γ
(i)
t =

∫
Rn

g
(
x, N[0,t], t

)
p(x, t)dx. (3.110)

The simple additive structure of the filtering equation is not accidental. In fact, any number
of measurement processes which are independent when conditioned on the signal process
lead to independent terms in the filtering equation, i.e. each of the terms is the same as if
this measurement were the only one available. Filtering results exhibiting this nice structure
can be found e.g. in Frey et al. (2013) for the combination of point process and diffusive
observations. In Ujfalussy and Lengyel (2011b), a special case of the one presented here
was treated.
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Approximation
by CAR(p)

process

Gaussian
process

Approximate filter
for multivariate

OU process

Figure 3.2: The proposed scheme for filtering a Gaussian process with point process obser-
vations: The general Gaussian process is first approximated by a continuous autoregressive
(CAR) process of a certain order p. For this class of processes the filtering problem is
tractable and we can adopt the approximate Gaussian filter of Section 3.2.2.

3.3 Extensions II – Gaussian Process Prior
Here, we want to present a scheme which makes approximate filtering possible for a general
Gaussian process (GP). The scheme is illustrated in Fig. 3.2. The basic idea is to approximate
the Gaussian process spectral density with the one of a suitable Gaussian diffusion process
which we call continuous autoregressive process or CAR process. Their relation to discrete-
time autoregressive processes is briefly treated in Appendix A.2. The filtering problem for
CAR processes is a special case of the multivariate OU discussed in the previous section,
and therefore admits an approximate Gaussian filter.

In the following, we define the CAR process and list a number of properties, in par-
ticular the representation of the spectral density function. Afterwards, we will use that
representation to derive a spectral approximation scheme.

3.3.1 Definition and properties
A certain subclass of Gaussian diffusion processes can be regarded as solutions to a linear
stochastic differential equation of order p of the form

U
(p)
t + ap−1U

(p−1)
t + ...+ a0Ut = bζt, (3.111)

where ζt is white noise, and U
(i)
t stands for the derivative of order i of Ut. This higher-order

SDE can be written as an Itô SDE of the form of Eq. (3.99), where

Xt =


Ut

U
(1)
t
...

U
(p−1)
t

 , A =


0 −1 0 . . . 0

0 0 −1
. . . 0

... ... . . . . . . 0
0 0 0 0 −1
a0 a1 . . . . . . ap−1

 , B =


0 . . . 0 0
... . . . ... ...
0 . . . 0 0
0 . . . 0 b

 .

(3.112)
We call such a process continuous autoregressive of order p, or CAR(p). Our interest lies
in the marginal distribution of the first component of Xt, Ut. It is not possible to give a
general closed-form expression for the autocovariance function of Ut,

k(τ) = E [UtUt+τ ] , (3.113)
nor of the autocovariance matrix of Xt. But we can give a closed formula for the spectral
density matrix of Xt which holds for any multivariate OU process,

S(ω) = 1

2π

∫ ∞

−∞
E
[
XtX

⊤
t+τ

]
e−iωτdτ =

1

2π
(A+iω1)−1BB⊤(A⊤−iω1)−1, (3.114)
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c.f. Gardiner (1985). By using the special forms of the matrices A,B in Eq. (3.112), we
can write the spectral density of Ut as

s(ω)
.
=

1

2π

∫ ∞

−∞
k(τ)e−iωτdτ =

b2

2πχ(ω)
, (3.115)

where

χ(ω) =

∣∣∣∣∣∣
p∑

j=0

aj · (iω)j
∣∣∣∣∣∣
2

, ap = 1, (3.116)

is the fundamental polynomial associated with the CAR(p) process.

3.3.2 Spectral approximation scheme
Given a stationary Gaussian process (GP) with covariance function kGP(τ), we want to
find the parameters a0, ..., ap−1, b of a CAR(p) process, such that the latter approximates
the former. This can be done numerically, e.g. by minimizing the L2 norm of the difference
of the two spectral density functions. Here, we want to give an alternative, semi-analytical
method.

First, we have to establish which order p of the CAR process is suitable. This depends on
the smoothness of the GP which we wish to approximate. The smoothness properties of a
GP are expressed in terms of the covariance function kGP(τ), c.f. Rasmussen and Williams
(2006): The GP is (p−1)-times mean-square (MS) differentiable iff the covariance function
is (2p − 2)-times continuously differentiable at t = 0. If a given covariance function has
q = 2p−2 continuous derivatives at t = 0 but its (q+1)st derivative is either discontinuous
or singular at t = 0, then the Fourier transform of the (q+1)st derivative is not integrable.
Thus we write the condition for the GP to be (p− 1)-times MS differentiable as∣∣∣∣∫ sGP(ω)ω

2p−2dω

∣∣∣∣ < ∞. (3.117)

where sGP(ω) is the spectral density of the GP,

sGP(ω) =
1

2π

∫ ∞

−∞
e−iωτkGP(τ)dτ. (3.118)

On the other hand, a CAR(p) process is by definition (p − 1)-times mean square (MS)
differentiable. Therefore, if the GP we are considering satisfies the condition (3.117), we
approximate it with a CAR process whose order is at most p.

Let us proceed to the approximation scheme. Given the freedom of choosing p + 1
parameters a0, ..., ap−1, b, we demand that the spectral function of the GP coincide with the
spectral function of the CAR(p) process at p+1 frequencies 0 ≤ ω0 < ω1 < ... < ωp < ∞,

sGP(ωi) = s(ωi), i = 0, 1, ..., p. (3.119)

Note that this does not solve the problem per se, it merely re-parametrizes the problem such
that instead of having to specify a0, ..., ap−1 and b whose meaning is not very intuitive, we
get to choose p+1 ‘important’ or matching frequenciesω0 < ... < ωp based on the structure
of sGP(ω).
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Let’s choose ω0 = 0 for convenience. By using Eq. (3.115), we can rewrite (3.119) as

f(ωi) ≡ χ(ωi)sGP(ωi) =
b2

2π
, i = 0, 1, ..., p. (3.120)

or
b2

2π
= f(ω0) = f(ω1) = f(ω2) = · · · = f(ωp), (3.121)

which is a system of p+1 polynomial equations in a0, ..., ap−1, b. This system of equations
has in general many solutions, but the right one to pick is the one where all ai’s are real and
where the eigenvalues of A have positive real part. With this solution, the spectral density
takes the form

s(ω) =
f(ωi)

χ(ω)
(3.122)

3.3.3 CAR approximation of the squared-exponential GP
We consider a GP with squared exponential covariance function

kGP(τ) = k0 exp
(
−1

2θ
2τ2
)
, (3.123)

which is smooth at τ = 0 and therefore yields a process with smooth sample paths. For this
GP a CAR process of any order is suitable. Let us illustrate the above scheme by calculating
the CAR(2) spectral approximation. The spectral density function of the GP reads

sGP(ω) =
k0√
2πθ2

exp
(
− ω2

2θ2

)
, (3.124)

and the fundamental polynomial (3.116) of the CAR(2) process takes the form

χ(ω) = a20 + (a21 − 2a0)ω
2 + ω4. (3.125)

Let us choose ω0 = 0, and write down the system of equations in (3.121)

b2

2π
= a20 = e−

ω2
1

2θ2
(
a20 + (a21 − 2a0)ω

2
1 + ω4

1

)
= e−

ω2
2

2θ2
(
a20 + (a21 − 2a0)ω

2
2 + ω4

2

)
.

(3.126)
This is a quadratic system of equations in a0, a1, b and it has the positive solution

b =
√
2πa0, (3.127)

a0 =

[
−ω2

1 − ω2
2

c1 − c2

]1/2
, (3.128)

a1 =
[
2a0 − 1

2(c1 + c2)a
2
0 − 1

2(ω
2
1 + ω2

2)
]1/2

, (3.129)

where
ci =

1

ω2
i

[
1− exp

(
ω2
i

2θ2

)]
. (3.130)

We are left with choosing two non-zero matching frequencies ω1, ω2. By visually inspecting
the spectral density function of the GP, we find that (ω1, ω2) = (θ, 2θ) is a good choice.
Incidentally, we find numerically that this is close to the choice of matching frequency that
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minimizes the L2-norm between s and sGP. For this choice of matching frequencies, we
can write the CAR(2) spectral density as

s(ω) =

√
72
π k0/θ(

3− 4e1/2 + e2
)
(ω/θ)4 −

(
15− 16e1/2 + e2

)
(ω/θ)2 + 12

, (3.131)

and we display it, along with the GP spectral density function, in Fig. 3.3.
The CAR(2) process is but a crude approximation to a smooth GP. The samples from

the CAR(2) process have similar correlation structure, but they are less smooth on small
time-scales. In fact, the CAR(2) is exactly once MS differentiable, so its second derivative
is white noise (as can be inferred from the SDE). In Fig. 3.4 we show sample traces and
their derivatives from the squared exponential GP and from the fitted CAR(2).

3.3.4 Filtering with approximate prior
Since the CAR(2) process is a special case of the multivariate OU process (see Section 3.2.2),
we can use the approximation of the squared-exponential GP by a CAR(2) process in order
to filter the GP from point process observations. Interestingly, despite this crude approxi-
mation and the associated model mismatch during filtering, using the CAR(2) process as a
prior for inference when the ground truth of the data is sampled from a squared-exponential
GP yields a filtering performance which is indistinguishable from the case where the ground
truth is a CAR(2) process. This is shown in Fig. 3.5 to hold even for higher orders of the
CAR(p) process, and the performance saturates already for p = 2. Therefore, the filtering
performance seems to be limited by factors other than the model mismatch. Possible factors
include the limited bandwidth of the spiking process and the approximate nature of the
filter itself (recall that the filter that is used for the multivariate OU process is not exact, but
rather a Gaussian ADF).
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Figure 3.3: The spectral densities of the original squared exponential GP (black) and the
fitted CAR(2) process (red, dashed). The matching frequencies (black dots) are close to
those that would minimize the L2-norm between the two curves under the constraint that
they cross at ω = 0.
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Figure 3.4: A comparison of sample traces and their derivatives from the squared exponen-
tial GP and from the fitted CAR(2). While all the derivatives of the GP are smooth, the
first derivative of the CAR(2) process looks (on a small scale) like the Ornstein-Uhlenbeck
process, i.e. it is MS continuous but not MS differentiable.
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Figure 3.5: Comparison of the filter performance in terms of the mean-squared error in
units of the prior variance. Black line: The signal is sampled from a CAR(p) process, which
means that the model under which filtering is performed coincides with the ground truth.
Red line: The signal is sampled from a squared-exponential Gaussian process, but filtered
according to its CAR(p) approximation. The performance in the two cases is equivalent,
which shows that the filtering performance is not limited by the approximation of the signal
process. Length of the time window: T = 300. Parameters of the GP: k0 = θ = 1.
Parameters of the spike emission: g0 = β = 1. Matching frequencies for the CAR(p)
approximation: ω0 = 0, ωi = 2i−(p+1)/2, 1 ≤ i ≤ p.
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3. Extensions of a Functional Theory of Short-term Plasticity

3.4 Analysis of the Dynamics and Predictions
Here, we want to analyse the dynamics of the posterior for the adaptive point process from
section 3.2.1. Recall the equations for mean, variance, and the expected firing rate,

dµt = −θµtdt+ βtσ
2
t (dNt − γtdt), (3.132)

dσ2
t =

(
b2 − 2θσ2

t − β2
t σ

4
t γt
)
dt, (3.133)

γt = g0 exp
[
βtµt +

1

2
β2
t σ

2
t +At

]
, (3.134)

where we omitted tildes for notational convenience. The fact that these equations describe
an approximate posterior is not relevant for the following discussion, we simply assume
that the approximation error is small and that they estimate the presynaptic membrane
potential with an accuracy which is sufficient in a biological setting. Also recall that the
interpretation of these equations in the context of the KTN theory is that the posterior
mean µt corresponds to the post-synaptic potential and the posterior variance σ2

t is some
kind of resource variable.

Establishing a biological interpretation of the variables At and βt in the context of STP
is an open problem. In the generative model, they correspond to the presynaptic adaptation
variables which determine the spiking output of the presynaptic cell. In order to allow for
the estimation of the presynaptic membrane potential, the synapse has to have exact copies
of these processes. In the following subsections, we will present various analyses of how
these presynaptic mechanisms alter the dynamics of STP. Therefore we assume that the
synapse has access to its own instantiations of At and βt, and even though we call them
adaptation variables, we think of them as being local quantities of the synapse akin to µt

and σ2
t .

First, we consider a model where At is a simple process and βt is a constant. This
corresponds to the case where the presynaptic cell has firing-rate adaptation. We show
that this can require the synapse to exhibit short-term facilitation for certain parameter
regimes, and that the parameter space is structured in the same way as the parameter space of
the three-variable Markram-Tsodyks (MT) model. Following that, in Subsection 3.4.2 we
suggest a synaptic interpretation of At, which however leads to a problem of time-constants.
We make an attempt to solve this problem by introducing a time-dependent βt. We then
show that the resulting four-variable normative STP model is richer than the MT model
by fitting it to very short-term plasticity which the MT model fails to explain (see Fig. 1.2).

3.4.1 Adaptation can lead to facilitation
For this section, we let βt = β > 0 constant and assume a simple dynamics for the adapta-
tion variable, i.e.

dAt = −θrAtdt− η0dNt, (3.135)

which means that At can be expressed as a convolution of an exponential kernel with the
previous spikes,

At = A0 +

∫ t

0
η(t− s)dNs, η(t) = −η0e

−θrt. (3.136)
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Figure 3.6: The qualitative dynamics of µt, σ2
t , and γt of Eqs. (3.132-3.134) in response

to a pair of spikes. The solid black line shows the response in the absence of adaptation
(At = 0): γt increases after the first spike, leading to a decrease in σ2

t and a smaller second
EPSP. The dashed line shows the response with adaptation (η0 > 0): γt now decreases after
the first spike, leading to an increase in σ2

t and a larger second EPSP. Also note that for the
chosen parameter values σ2

t experiences a rebound, and therefore the second EPSP could
be smaller for a certain range of inter-pulse intervals, despite the fact that η0 < 0. See also
Fig. 3.7.

We call η(t) adaptation kernel, and τr = 1/θr the adaptation time-constant. Here, we
assume η0 ≥ 0 in order to make the process Nt non-explosive.

We consider the paired-pulse ratio (PPR) as a function of the inter-pulse interval ∆t,
as predicted by the STP model in Eqs. (3.132-3.134). More precisely, we calculate the ratio
of presynaptic responses to a sequence of two pulses at t = 0 and t = ∆t, i.e.

Nt = H(t) +H(t−∆t), (3.137)

where H is the Heaviside function. The postsynaptic potential jump in response to a spike
equals the dNt term in Eq. (3.132) and is proportional to the value of σ2

t at the time of the
spike. Therefore, the PPR reads

PPR(∆t) =
σ2
∆t

σ2
0

. (3.138)

In accordance with how PPR measurements are usually conducted in vitro, namely with
no spikes occurring in the few seconds before the first spike of the pulse pair, we choose
initial conditions for µ0, σ2

0 , and A0 that are equal to the stationary values in the absence of
spikes. This implies thatA0 = 0 and that µ0, σ2

0 are the solutions to the nonlinear equations
(obtained by setting dNt and the left-hand sides of Eqs. (3.132,3.133) to zero)

0 = −θµ0 − βσ2
0γ0, 0 = b2 − 2θσ2

0 − β2σ4
0γ0. (3.139)

The numerator of Eq. (3.138) is then obtained by integrating the system of ordinary differ-
ential equations in Eqs. (3.132-3.134) (note that dNt = 0 between the two pulses and that
the second pulse does influence the value of σ2

∆t) from 0 to ∆t.
Inspection of Eqs. (3.132-3.134) already reveals that the presence of a non-zero adap-

tation variable At has the potential of altering the dynamics quite significantly:

• With At = 0 (see Fig. 3.6, solid line), the posterior firing rate γt increases instan-
taneously after the first spike due to the sudden increase (EPSP) of µt from µ0 to
µ0 + βσ2

0 . Therefore, σ2
t decreases, and the subsequent spike will lead to a jump in

µt from µ∆t to µ∆t + βσ2
∆t which is smaller than the previous one. Therefore, in
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the absence of adaptation, the STP model (3.132-3.134) leads to depression, i.e. the
PPR(∆t) is negative for all values of the inter-pulse interval ∆t.

• With At < 0 (see Fig. 3.6, dashed line), i.e. if η0 > 0, the increase in µ from µ0 to
µ0 + βσ2

0 at the time of the first spike is counter-acted by a decrease in At from 0 to
−η0. If η0 < βσ2

0 , the firing rate is still increased, albeit less than in the previous case.
However, if η0 > βσ2

0 , the firing rate is decreased, leading to an increase in σ2
t which

makes it (at least temporarily) bigger than σ2
0 . Therefore, in a certain time window, a

second spike will lead to a jump in µt which is bigger than the first one.

The condition for the occurrence of PPRs bigger than unity for certain values of the inter-
pulse interval ∆t is

η0 > βσ2
0, (3.140)

but the PPR can become smaller than unity again for bigger values of ∆t, leading to a
PPR curve which has values above and below zero. Conversely, even if the above condition
is violated, the PPR can become bigger than unity for large values of ∆t. We therefore
distinguish four different qualitative behaviors of the posterior dynamics: 1) purely facilitat-
ing, 2) mixed, with facilitation preceding depression, 3) mixed, with depression preceding
facilitation, and 4) purely depressing dynamics.

We analyzed the shape of the PPR curve for a large range of parameter values (removing
redundancies by using dimensionless quantities). We find that the parameter space for η0 <
0 can be neatly partitioned into four regions (see Fig. 3.7A) according to two dimensionless
numbers r, s as follows: 1) r, s > 1, 2) r > 1, s < 1, 3) r < 1, s > 1, and 4) r, s < 1. The
relevant quantities read

r =
η0
βσ2

0

, s =
τr
τm

, (3.141)

where τm = 1/θ is the membrane time-constant appearing in Eqs. (3.132,3.133).
A similar behavior is seen in the phenomenological Markram-Tsodyks (MT) model,

see Section 1.2 and Eq. 1.1. Due to the simplicity of those equations, we can calculate the
PPR analytically,

PPRMT(∆t) =
1

Y

(
1− Y e−

∆t
τx

)(
Y + F (1− Y )e

−∆t
τy

)
. (3.142)

We find that the two dimensionless numbers

rMT =
F (1− Y )2

Y 2
, sMT =

τy
τx

, (3.143)

allow the same type of classification as we did for the normative model above, see Fig. 3.7B.
There are also important differences between the MT model and the normative model.

The first is that all the PPR curves start at unity for the normative model, but they have
values different from one at ∆t = 0 in the MT model. This follows from the fact that
the resource variable x of the MT model sees an instantaneous increase upon a spike, see
Eq. 1.1. In contrast, the normative model’s resource variable σ2

t does not increase imme-
diately, but changes only as a second-order effect due to the change in γt (see the analysis
above). Related to this is the second distinction, namely that the MT PPR curve has at
most one local extremum, whereas the normative model can have more than one.
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Figure 3.7: Distinct dynamics are seen in different regions of the parameter space of two
STP models: (A) In the normative STP theory, described by Eqs. (3.132-3.134), the regions
are defined by the values of the dimensionless strength of adaptation, r = η0/βσ

2
0 , and the

ratio of refractory time-constant to the membrane time-constant s = τr
τm

. (B) Analogously,
in the Markram-Tsodyks model, the boundaries are determined by rMT = F (1− Y )2/Y 2

and the ratio of time-constants sMT = τy/τx.

The new prediction of this section is that there is an intimate link between the presynap-
tic firing-rate adaptation and the degree of short-term facilitation in the synapses directly
downstream. More precisely, the KTN theory predicts that the magnitude of change of
the presynaptic adaptation variable At in response to a spike determines whether facilita-
tion can be observed in the synapse, and the time-constant of the presynaptic adaptation
variable changes the time-course of this facilitation.

3.4.2 The problem of time-constants
The previous analysis of PPR dynamics has revealed a striking similarity between the nor-
mative STP model (with adaptation variable At) and the MT model. Crucially, whereas
the normative STP model produces only short-term depression when At = 0, as in the
original paper Pfister et al. (2009), the extension to adaptive point process dynamics for
the presynaptic neuron produces, in the very same general framework, predictions of short-
term facilitation. The similarities between the KTN dynamics and the MT dynamics go
even further, extending to the precise partitioning of the parameter space shown in Fig. 3.7.

The analysis above suggests that the adaptation variable At (or rather, its synaptic in-
stantiation) be mapped to the release probability variable Yt of the MT model. Indeed, the
jump in Yt after a spike is completely analogous to the (negative) jump in At, and it is the
size of this jump relative to other parameters which determines whether facilitation occurs.
However, there is an important distinction between the two models, namely the number of
time-constant parameters. The MT model has three time-constants τv, τx, τy, whereas the
normative model so far has two time-constants, τm and τr.9

9It could be argued that the inverse of g0 has units of time as well and therefore constitutes a time-constant.
However, it does not appear as the time-constant in a dynamical equation, and therefore does not count as such.
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Figure 3.8: Short-term depression data from Markram and Tsodyks (1996) (black dots) is
fitted with the Markram-Tsodyks model (blue line) and the KTN model (dashed red line).
Whereas the MT model does fairly well, the best estimate for the KTN model parameters
yields a static synapse. By introducing a time-dependent βt, the fit improves considerably
(solid red line).

The problem of time-constants has the consequence that some widespread types of short-
term depression, namely those where the recovery from depression is much slower than the
membrane time-constants, remains outside the scope of the present KTN model. Indeed,
the recovery from depression in this model (we can set At = 0 for this purpose) is governed
by the dynamics of σ2

t , which by Eq. (3.133) has a time-constant of τm/2. Therefore, when
we fit the KTN model to an example STP dataset (Markram and Tsodyks, 1996), the best-
fit parameters are τm = 33.9 ms, b = 0.21 mV/ms1/2, g0 = 121 Hz, and β = 0.974941
mV−1. This choice of parameters produces a response which looks like a static synapse (see
Fig. 3.8). In contrast, the MT yields a reasonable fit. The MT on the other hand gives a
reasonable fit with best-fit parameters J = 1.40 mV, Y = 0.61, F = 0.64, τv = 46.5 ms,
τx = 2.2 s, and τy = 1.04 ms). Note that the optimization problems are non-convex, so
despite the use of random searches the existence of slightly better fits cannot be excluded.

An additional time-constant can be introduced by making the gain parameter β time-
dependent. More precisely, we introduce simple dynamics for βt, namely

dβt =
β0 − βt

τβ
+BβtdNt, B ≥ −1, (3.144)

where the constraint for B prevents β from becoming negative. The effect of this extension
is that the presynaptic firing probability becomes more or less sensitive to the value of the
membrane potential after a spike (see Fig. 3.9). This effect decays after a characteristic
time-constant of τβ .

Equipped with a time-dependent β and a new time-constant parameter, the model can
now reasonably fit the data from Markram and Tsodyks (1996), see Fig. 3.8. The fitted
time-constant τβ is 4.7 seconds, whereas the membrane time-constant is τm = 40 ms. The
remaining best fit parameters read b = 0.24 mV/ms1/2, g0 = 0.66 Hz, β0 = 0.72 mV−1,
and B = −0.55. Moreover, this STP-data motivated extension of the model predicts that
STP data showing a pronounced difference of time-constants (i.e. between the depression
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ut

rt

Figure 3.9: The effect of the dynamic βt variable on the presynaptic firing rate rt through
the gain function rt = g0e

βtut shown in red. The membrane potential ut follows a Gaussian
distribution, and higher values lead to higher firing rate (left panel). If βt decreases instan-
taneously upon a spike, the gain function (red) becomes shallower (center panel), reducing
the firing rate for high values of the membrane potential and increasing it if the membrane
potential is low. Since the membrane potential is likely to be high when a spike occurs,
this often leads to a decrease in firing rate. After the spike, βt decays back (right panel),
restoring the shape of the gain function.

time-constant and the membrane time-constant), must have pronounced and long-lasting
presynaptic adaptation effects best described by the dynamics of βt in Eq. (3.144).

Making β time-dependent changes the behavior of the posterior and therefore the con-
ditions for and the properties of STP. Essentially, the analysis presented in Section 3.4.1
for constant β has to be redone (see Open Problems below).

69



3. Extensions of a Functional Theory of Short-term Plasticity

3.5 Discussion and Future Directions
In this chapter, we reformulated the theory in a more general and more easily extendable
framework. In particular, inference calculations required for predicting postsynaptic re-
sponses are now possible for a large class of generative models, including those where the
membrane potential is a multivariate Ornstein-Uhlenbeck process or indeed a Gaussian
process instead of a simple OU process, and the spikes follow an adaptive point process
instead of a simple inhomogeneous Poisson process. We looked at one extension in detail,
namely the addition of presynaptic adaptation to the spiking mechanism, and showed its
link to short-term facilitation. We also showed how to match the phenomenological model
of STP, the Markram-Tsodyks model and proposed one possible resolution of the problem
of time-constants.

By performing the extensions to the KTN theory that are mentioned above, we are
carrying out the ideas which were sketched in the original paper. Indeed, in Pfister et al.
(2009) it was said that

“Our assumption about the prior distribution of presynaptic membrane poten-
tial dynamics is highly restrictive. A broader scheme that has previously been
explored is that it follow a Gaussian process model [...] with a more general co-
variance function. Recursive estimation is often a reasonable approximation in
such cases, even for those covariance functions, for instance enforcing smooth-
ness, for which it cannot be exact.”

To wit, this program was carried out in Section 3.3. Along with the results of Section 3.2.1,
it allows STP predictions to be derived for the full AGAPE model proposed in Chapter 3
as a generative model for the presynaptic dynamics.

3.5.1 Suggested experiments
Despite the fact that the KTN theory, both in its original form and with the extensions
presented in this section and the last section, provides a number of specific predictions for
how STP types and dynamics should be allocated in the brain, a direct experimental test of
these ideas is still missing. Here, we sketch a few ideas for potential experiments.

Testing the general link between presynaptic statistics and STP

The KTN theory, both in its original and extended forms (including adaptation), predicts
that in order to perform the estimation task, the short-term synaptic properties should be
tuned to the statistics of the presynaptic neurons. In the mathematical formulation of the
theory, this is evidenced by the fact that the presynaptic parameters appear in the equations
governing the synaptic dynamics.

In order to test this hypothesis, intracellular in vivo recordings have to be obtained from
a specific neuron. Then, a suitable presynaptic model has to be fitted to the recorded data (see
Chapter 3). The presynaptic model has to be in a class which allows STP predictions to be
derived according to Section 3.2, e.g. a Gaussian process for the membrane potential (signal)
and an adaptive point process for the spikes (observations). STP predictions can be done for
artificial stimuli (e.g. pulse trains or paired pulses) or for naturalistic ones (i.e. as sampled
from the presynaptic model). In vitro STP experiments on a synapse which is downstream
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to the previously recorded neurons will then measure the postsynaptic responses (preferably,
in the dendrite close to the synapse) to presynaptic stimulation according to the protocols for
which predictions have been made. Comparison of the measured and predicted responses
will establish whether that particular synapse is attuned to the presynaptic neuron’s statistics
in a way required to estimate the presynaptic membrane potential.

Besides the technical challenges of such an experiment, there are a number of theoretical
concerns with its interpretability. First of all, even if we take the position that the KTN
theory is true and that certain synapses indeed perform estimation of presynaptic quantities,
we do not expect a random synapse to exhibit this behavior. Therefore, a negative outcome
of the above experiment disproves the blunt statement that all synapses perform estimation
of the presynaptic membrane potential, but it does not constrain a weaker form of the theory
which states that certain synapses perform estimation of the presynaptic membrane potential,
or that they perform estimation of other presynaptic quantities, such as nonlinear functions
of the presynaptic potential. Only a sufficiently large number of experiments will allow one
to establish an estimate of the fraction of synapses invested in this specific estimation task.
As for the alternative hypotheses, we believe that they need more careful formulation (see
the discussion in Section 3.5).

While we haven’t been able to arrange for this experiment to be performed, we have
assembled all the theoretical tools required to predict the outcome, which is an important
achievement of this thesis.

Testing specific predictions related to presynaptic adaptation and STP

The extensions of the KTN theory have produced two new predictions. The first is that
sufficiently strong (either by magnitude or time-constant) presynaptic adaptation requires
short-term facilitation in the downstream synapse for the estimation of the presynaptic
membrane potential. The second is that under the assumptions of the KTN theory, one
requires a very specific type of presynaptic adaptation (namely of the coupling parameter β
in the gain function) in order to produce a specific type of short-term depression which has
a long depression time-constant relative to the membrane time-constant.

The testing of these hypotheses requires a good knowledge of the synapses exhibiting
the estimation of the presynaptic membrane potential in order to reduce the risk of ‘fishing
in the dark’. Given a population of candidate synapses, one can then (for example) select a
subset which is strongly facilitating and measure presynaptic dynamics. Comparing models
of presynaptic activity with and without adaptation can in principle establish whether there
is a connection.

3.5.2 Open problems
There are a number of open problems which were not addressed in detail. Some of them
are indeed now possible to address, given the advances in theoretical tools that have been
provided with this thesis.

Optimality of the encoder

In Chapter 1, we mentioned the possible benefit of the analog-to-digital-to-analog conver-
sion between somatic membrane potential of the presynaptic cell and the dendrite of the
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postsynaptic cell in the context of long-distance projections. According to the KTN the-
ory, STP serves to optimally decode the digital signal transmitted through the axon. So
far it assumes one type of encoding (exponential gain function with or without adaptation)
and asks for the corresponding optimal decoder (filter). Since the performance of the fil-
ter is constrained by the bandwidth of the encoder, i.e. the filter error is directly linked to
the mutual information between the presynaptic membrane potential and the spikes (Guo
et al., 2008), the system is not working optimally unless encoding maximizes the mutual
information within some constraints (e.g. maximum firing rate). This raises the question
what this optimal encoder looks like, and how it affects the relation between presynaptic
and postsynaptic quantities.

Target-cell specificity problem

Foremost among the challenges to the KTN theory is the target-cell specificity problem.
The main assertions of the KTN theory are massively challenged by both the possibility
that multiple synapses from the same cell can have different STP properties and the cases
where the type of STP can be predicted by knowing the cell type the synapse is projecting
to (Reyes et al., 1998; Markram et al., 1998; Blackman et al., 2013). In order to resolve
the problem, one has to make the theory’s claims more case-specific. Specifying where
in the brain estimation (in the sense described by the theory) can be helpful, and which
quantities should be estimated, is the next important step towards that goal. Then, using the
general framework developed in Section 3.1, one can develop filters of various presynaptic
quantities, and predict the range of STP properties they produce according to the theory.
These predictions can be compared to experimental findings.

There are two immediate possibilities to address the target-cell specificity problem. The
first is to assume that the different synapses estimate different components of the presynap-
tic membrane potential. This can be formalized as a filtering problem where a multivari-
ate Ornstein-Uhlenbeck process is observed through a spike train. The multivariate OU
describes different signals present within the presynaptic membrane potential, and each
synapse has the task of filtering out one of these components and communicate it to the
postsynaptic cell. The resulting synapse population will have a range of STP properties.

The second option that is accessible within the mathematical framework presented in
this thesis is to allow for different synapses to estimate different, possibly nonlinear functions
of the presynaptic membrane potential. Again, this will require different STP dynamics for
different synapses.

Both approaches could potentially explain away the variabilities seen in target-cell spe-
cific STP and make them fit the KTN theory with the modification that the target of esti-
mation is target-cell specific, but estimation per se is not. In these scenarios, the target-cell
determines the component or function to be estimated, which in turn determines the type
of STP in that synapse. This reconciles the idea of the KTN theory that estimation is
performed by synapses with the observation that the STP properties can be told from the
postsynaptic cell-type. Indeed, if a certain postsynaptic cell-type is involved in a computa-
tion requiring a specific signal or transformation from the presynaptic cell, the theory shows
how this may be made possible by equipping the synapse with a suitable STP dynamics.

Further research is necessary in order to establish the degree to which this explanation
fits STP data, or whether it is too general to remain falsifiable.
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Parameter learning

The KTN theory states that the STP dynamics are attuned to the presynaptic dynamics, em-
bodying some kind of prior knowledge of the presynaptic statistics of membrane potential
and spikes. This prior knowledge could be present either by genetic predetermination or by
adaptive processes which allow it to be learned from the statistics of spikes. At any rate, nei-
ther the original KTN theory nor the extended version of this thesis offer any explanation
how this learning could be achieved. Let us give a brief outline or plan how this gap could
be filled.

Mathematically speaking, the problem of learning the presynaptic parameters can be
phrased as recursive identification of a partially observed system. This is an old problem
in stochastic filtering and control, and there is a correspondingly large body of literature
about it (see Kantas et al. (2014) and references therein). A recursive maximum likelihood
approach can be used to derive a recursive update rule for the parameter θ (any of the presy-
naptic parameters at play), which in discrete time takes the form

θt+1 = θt + γt+1∇pθ0:t(yt|y0:t−1), (3.145)

where
∇pθ0:t(yt|y0:t−1) = ∇pθ0:t(y0:t)−∇pθ0:t(y0:t−1). (3.146)

While this approach provides the mathematical form of the learning rules, the harder prob-
lem is to interpret these rules in a biological setting. For example, the parameter β, which
is the coupling parameter of the presynaptic firing rate to the membrane potential fluc-
tuations (see Eq. (3.31)), acquires the role of a long-term synaptic strength parameter in
Eqs. (3.58,3.59) for the posterior. The recursive parameter update rule will therefore be a
synaptic plasticity rule from that perspective. The interpretation is less clear for the other
parameters of the model.

Dynamic analysis for time-dependent β

In Section 3.4.1 we investigated the dynamics of the equations for the posterior distribution
for constant β and discovered a nice structure of the parameter space which can be mapped
to the Markram-Tsodyks model. This analysis would change for the extended model with
a time-dependent β, and we haven’t had the time to redo it for this case. The parameter
space becomes higher-dimensional due to the introduction of τβ and B. We can expect the
parameter space to be still divided into different regions of STP properties, but there might
now be more than four classes and possibly nonlinear boundaries. Therefore, an analysis
similar to the one in Section 3.4.1 is likely to be more complex.

Stationarity of the presynaptic neuron

So far, the KTN theory assumes that the presynaptic cell’s dynamics is stationary, such that
it is possible for the synapse to learn the appropriate generative model, either from the
statistics themselves or by being genetically preset. This assumption can be questioned on
the grounds that a lot of neurons display a set of completely disparate behavior depending
on such factors as neuromodulation or the source and type of synaptic input and associated
non-linear gating effects.
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A presynaptic neuron which has even just two distinct modes of operation requires a
multi-state or switching model, and the synapse has to infer, in addition to the membrane
potential, the state that its presynaptic partner is currently in. Such a switching model has
been considered in Pfister et al. (2010) for up- and down-states.

Given the switching of neuronal states, the synapse could have the strategy of having
different estimation targets for the different states, or being in the ‘estimation’ state only for
certain states of the presynaptic neuron. It could be conceivable that the STP properties
are attuned to one state or behavior of the presynaptic neuron, allowing the synapse to infer
the presynaptic membrane potential when the presynaptic neuron is in that state, and doing
a different computation in another state. However, although this is a plausible possibility,
such an arrangement would be even harder to detect experimentally.

Multisynaptic generalization

The KTN theory focuses on one single synapse and the computations it can perform by
having the ‘right’ STP dynamics, i.e. those attuned to the presynaptic neuron’s statistics.
However, an average neuron receives thousands of synaptic inputs, and it is the combina-
tion of all these inputs determining the neuron’s output. Therefore, it could be argued that
the computational function assigned to a single synapse within a neuron should have a cor-
respondence to the computational function of the neuron within a local circuit, and the
circuit’s function within a brain region or indeed the brain.

The mathematical framework presented in this thesis allows in principle to treat the
case where multiple spike trains are observed and used to infer the joint state of multiple
presynaptic neurons. This could serve to infer a specified function of all the presynaptic
inputs. However, the biological mechanisms which could support such a filter are difficult
to find, and it would also be difficult to validate such a theory without knowing the function
the system is trying to compute. However, such a theory might have merits as a conceptual
tool.

74



Appendix A

A.1 A brief Introduction to SDEs and Stochastic Filtering Theory
Here, we review the material necessary to understand the filtering theory aspects of this
thesis. We will introduce the theory of continuous-time Markov processes from the per-
spective of Itô stochastic calculus and stochastic differential equations (SDEs). Then, we
will introduce the key concepts of stochastic filtering theory. We assume that the reader is
somewhat familiar with the basic concepts of probability theory.

This brief introduction by no means replaces a thorough study of the subject, but it
should give the reader a basic idea of the relevant topics. For a more in-depth study, we
suggest the following textbooks. For a general introduction to stochastic processes, see Kle-
baner (2005) or Gardiner (1985). For a treatment of stochastic filtering theory specifically,
see Bain and Crişan (2009) or Jazwinski (1970).

A.1.1 The Wiener process, stochastic integration, stochastic calculus
In order to introduce SDEs, we make use of the Wiener process, defined as the stochastic
process {Wt, t ≥ 0} with the following properties (Klebaner, 2005)

1. W0 = 0,

2. Its increments are independent, i.e. Ws−Wt, s > t is independent ofWu, 0 ≤ u ≤ t,

3. Its increments are normal, i.e. Ws −Wt ∼ N (0, s− t), s > t,

4. Its paths are continuous.

Given the Wiener process, one can define stochastic integration. This can be properly done
by first defining the integral for simple processes which are piecewise-constant, and then
taking the limit of approximations of a more general process by simple processes (Klebaner,
2005). Here, however, we want to give a simpler definition (Gardiner, 1985). The stochastic
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integral of the process X = {Xt} with respect to the Wiener process is defined as∫ t

0
XsdWs

.
= lim

n→∞

n∑
i=1

Xti−1(Wti −Wti−1). (A.1)

In Eq. (A.1), for any n ∈ N, 0 = t0 < t1 < ... < tn = t is a partition of the interval [0, t]
and the limit is taken in the mean-square (MS) sense.1 The convention that the process
X is evaluated at the beginning of each subinterval is the Itô convention, and the integral
as defined above is called the Itô integral. In the other common convention, called the
Stratonovich convention, the process Xt is taken mid-interval.

For which class of processes X does the integral above make sense? Here and later
in filtering theory, filtrations are important, so it is convenient to introduce them here. A
filtration F = {Ft} is an increasing (i.e. Ft ⊂ Fs for s > t) family of σ-algebras, with
the algebra Ft containing the information up to time t. In the case that the Wiener process
is the only source of information, the filtration is generated by the values of the Wiener
process, which we write as Ft = σ({Ws, 0 ≤ s ≤ t}). Moreover, we say that a process X
is adapted to the filtration F if Xt is Ft-measureable, which means that it is possible to
decide based on information contained in Ft whether an event for Xt (e.g. Xt > 0) has
occurred. In other words, the process X is non-anticipating; it does not see into the future.

If X is continuous and adapted to the filtration Ft = σ({Ws, 0 ≤ s ≤ t}), then the Itô
integral in Eq. (A.1) is well-defined. Moreover, the process Y defined by Yt =

∫ t
0 XsdWs

is also adapted, and if X satisfies ∫ t

0
E
[
X2

s

]
ds < ∞, (A.2)

then Yt has zero mean and variance given by the left-hand side of Eq. (A.2), and is a mar-
tingale, i.e.

E [Yt|Fs] = Ys, s ≤ t. (A.3)

However, if condition (A.2) is not satisfied, Yt is only a local martingale.
Can we build other adapted processes from the Wiener process and an adapted process

X? One can show that∫ t

0
XsdW

2
s

.
= lim

n→∞

n∑
i=1

Xti−1(Wti −Wti−1)
2 =

∫ t

0
Xsds, (A.4)

∫ t

0
XsdW

n
s

.
= lim

n→∞

n∑
i=1

Xti−1(Wti −Wti−1)
n = 0, n > 2, (A.5)

meaning that integrals involving expressions beyond dWs do not make sense as they either
vanish or reduce to an ordinary integral. Moreover, expressions involving combinations of
Wiener process and time increments vanish as well, such as∫ t

0
XsdWsdt

.
= lim

n→∞

n∑
i=1

Xti−1(Wti −Wti−1)(ti − ti−1) = 0. (A.6)

1A sequence (Vn, n ∈ N) of random variables converges to V in the MS sense if E
[
(Vn − V )2

]
→ 0 for

n → ∞.
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Thus, from the Wiener process and adapted process X , one can construct the following
adapted processes:

F (Xt,Wt, t),

∫ t

0
G(Xs,Ws, s)dWs,

∫ t

0
H(Xs,Ws, s)ds, (A.7)

where F,G,H are continuous functions. Given these building blocks, an Itô equation for
Xt is a relation of the form

Xt = X0 +

∫ t

0
a(Xs, s)ds+

∫ t

0
b(Xs, s)dWs. (A.8)

This is a stochastic integral equation which describes a relation between Xt and the previous
values of the process. We often write this equation in the differential form

dXt = a(Xt, t)dt+ b(Xt, t)dWt, (A.9)

which is called an Itô stochastic differential equation (SDE). It is important to remember
that the SDE obtains its meaning in terms of the integral equation Eq. (A.8) only.

Itô calculus consists in using the differential representation and the rules dW 2
t = dt,

dWn
t = 0, n > 2, etc., to do calculations. For instance, let Xt satisfy the SDE (A.9) and

let Yt = f(Xt, t) be a nonlinear time-dependent transformation of the process X . Then,
provided that f is twice differentiable in its first argument and once in its second, there is
a stochastic chain rule that lets us write an SDE for Yt. Since terms containing dtpdW q

t

vanish under the integral if p > 1 or q > 2 or p = q = 1, we can drop all terms higher than
dX2

t in the Taylor expansion of f . We may therefore write

dYt = ∂tf(Xt, t)dt+ ∂xf(Xt, t)dXt +
1

2
∂2
xf(Xt, t)dX

2
t + ...

=

(
∂tf(Xt, t) + a(Xt, t)∂xf(Xt, t) +

1

2
b2(Xt, t)∂

2
xf(Xt, t)

)
dt

+ (b(Xt, t)∂xf(Xt, t)) dWt.

(A.10)

In the second line we used dW 2
t = dt and dWtdt = 0 in evaluating dX2

t . Equation (A.10)
is called Itô’s formula or Itô’s lemma. Taking expectations, we can drop the dWt term (under
the assumptions given above for the dWt integral), and we find that

dE [Yt]

dt
= E

[
∂tf(Xt, t) + a(Xt, t)∂xf(Xt, t) +

1

2
b2(Xt, t)∂

2
xf(Xt, t)

]
. (A.11)

By introducing the operator L = a(Xt, t)∂x +
1
2b

2(Xt, t)∂
2
x, called infinitesimal generator

of the process X , we can write this as

dE [Yt]

dt
= E [∂tf(Xt, t) + Lf(Xt, t)] . (A.12)

Equation (A.12) is the key to calculating time-evolution equations for the moments of the
process X .
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A.1.2 The Fokker-Planck equation
If the Itô SDE (A.9) has a solution with an initial condition X0, it defines a continuous
Markov process {Xt, 0 ≤ t ≤ T} (if it is non-explosive, on the entire non-negative real line).
We assume that the conditional probability density p(x, t|x0, 0) exists. The conditional
expectation of φ(Xt), which can be expressed by virtue of the density as

E [φ(Xt)|X0 = x0] =

∫ ∞

−∞
φ(x)p(x, t|x0, 0)dx, (A.13)

satisfies the differential equation

dE [φ(Xt)|X0 = x0]

dt
= E [Lφ(Xt)|X0 = x0] , (A.14)

which follows from Eq. (A.12). By expressing both sides of Eq. (A.14) in terms of the
density, we find

dE [φ(Xt)|X0 = x0]

dt
=

∫ ∞

−∞
φ(x)∂tp(x, t|x0, 0)dx

=

∫ ∞

−∞
Lφ(x)p(x, t|x0, 0)dx = E [Lφ(Xt)|X0 = x0] .

(A.15)

If the transition density and its first derivative vanish at infinity, we can integrate the second
integral by parts and obtain∫ ∞

−∞
φ(x)∂tp(x, t|x0, 0)dx =

∫ ∞

−∞
φ(x)L†p(x, t|x0, 0)dx, (A.16)

where
L† = ∂x (a(·, t)·) +

1

2
∂2
x

(
b2(·, t)·

)
(A.17)

is the adjoint of L, called Fokker-Planck operator. Since this holds for arbitrary φ, we
deduce that the transition probability density must satisfy the partial differential equation

∂tp(x, t|x0, 0) = L†p(x, t|x0, 0), (A.18)

called the Fokker-Planck equation (FPE). The transition probability density is the solution
to the FPE with the singular initial condition p(x, 0|x0, 0) = δ(x− x0). If the initial state
X0 has a density p0(x), the one-time probability density can be calculated as

p(x, t) =

∫ ∞

−∞
p0(y)p(x, t|y, 0)dy, (A.19)

and also satisfies the FPE.

A.1.3 Stochastic calculus for counting processes
A counting process N = {Nt, t ≥ 0} is a pure jump process with jumps of size one (also
called a simple point process). It can be represented as

Nt =
∞∑
n=1

H(t− Tn), (A.20)
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where H is the Heaviside function (H(x) = 1 if x ≥ 0 and H(x) = 0 otherwise) and
(Tn ≥ 0) is the random sequence of arrival times. Therefore, N is right-continuous with
left limits (càdlàg: continue à droite, limite à gauche). Stochastic calculus for counting
processes falls under the umbrella of stochastic calculus for semimartingales. However, for
the purposes of this thesis we do not need the full machinery of that calculus. We simply
define the integral of an adapted process X with respect to a counting process as∫ t

0
XsdNs =

∞∑
n=1

XT−
n
H(t− Tn), (A.21)

where T−
n = limt↗Tn t denotes the left limit. The limit is required to ensure that the

function to be integrated is predictable, i.e. that its value is known at the time of the arrival
of the jump inN . This is not a problem for continuous integrands, but crucial for integrands
containing jumps. For example, if Xt = Nt, the value of N increases by one at the arrival
time T , so the contribution to the integral must come from the value of N prior to the jump.

Expressions involving dNt are always understood to be evaluated with the left limit as
discussed above. One can use the counting process to drive the evolution of a jump process:

Xt = X0 +

∫ t

0
a(Xs, s)ds+

∫ t

0
b(Xs, s)dNs. (A.22)

This process will evolve deterministically (and be differentiable) between arrival times, and
have a jump of size b(XT− , T−) at an arrival time T . The above integral equation can also
be written in the differential form

dXt = a(Xt, t)dt+ b(Xt, t)dNt. (A.23)

By combining dNt and dWt terms, one can write SDEs for jump-diffusion processes, but
we do not use them in this thesis. For a process X satisfying Eq. (A.23), we can write a
stochastic chain rule. Let Y be the process defined by Yt = f(Xt, t). By observing that
between jumps, the differential of Yt obeys the classical chain rule and that at a jump arrival
time, the jump in Yt is equal to the nonlinear transformation of the jump in Xt (i.e. the
difference between the values of f after and before the jump), we end up with

dYt = [∂tf(Xt, t) + a(Xt, t)∂xf(Xt, t)] dt+ [f(Xt + b(Xt, t), t)− Yt] dNt. (A.24)

One may wish to formulate an SDE for the evolution of the counting process. This is
not strictly necessary, since the process may be defined by explicitly stating the probability of
a sequence of arrival times or of the distribution of increments. For example, an inhomoge-
neous Poisson process N with the stochastic intensity g(Xt) which depends on a diffusion
process X is characterized by the properties

1. N0 = 0,

2. Non-overlapping increments are independent, i.e. for t > s > t′ > s′, Nt −Ns and
Nt′ −Ns′ are independent,

3. Each increment has a Poisson distribution, i.e. Nt − Nt′ ∼ Poisson
(∫ t

t′ g(Xs)ds
)
,

t > t′.
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A similar definition is possible for the adaptive point processes discussed in this thesis. If
one wishes to write an SDE, one can make use of the Doob-Meyer decomposition for
semimartingales. For a counting process with a stochastic intensity λt (which may depend
on a latent process and on the counting process itself ), this decomposition takes the form

dNt = λtdt+ dMt, (A.25)

where Mt is a martingale. The process Λt =
∫ t
0 λsds is called the compensator of N . It is

the predictable projection of the process N .

A.1.4 Stochastic filtering
In many applications, such as this thesis, one is interested in a stochastic process X which
is not directly observable (called the signal or state process). Instead, one observes a related
stochastic process Y , called the measurement, observation, or emission process. The goal
of filtering is to estimate the state based on the observations, i.e. to calculate conditional
expectations

pt [φ]
.
= E [φ(Xt)|Yt] , (A.26)

where Yt = σ({Ys, 0 ≤ s ≤ t}) is the natural filtration of the observation process. The
assumptions for the processes X,Y may be that both are of diffusion type, such as in the
following problem

dXt = a(Xt, t)dt+ b(Xt, t)dWt, (A.27)
dYt = c(Xt, t)dt+ dVt, (A.28)

where W,V are independent Wiener processes. This filtering problem is the classical one
studied by Kushner (1962). In this thesis, we are dealing with counting process observations,
i.e. Y = N , where

dXt = a(Xt, t)dt+ b(Xt, t)dWt, (A.29)
dNt = g(Xt, t)dt+ dMt, (A.30)

with M being a martingale independent of W .
Filtering theory addresses this problem by deriving an SDE for the posterior (condi-

tional) measure pt, called filtering equation. There are two main approaches to achieve this,
1) the innovations approach (Fujisaki et al., 1972), and 2) the reference measure approach
(Zakai, 1969). The first approach uses the innovation process and martingale theory to find
the equation for pt. The second approach uses a change of probability measure to make the
observations process trivial, and then simplifying the problem by first deriving an equation
for an unnormalized measure, from which pt can be recovered using the Kallianpur-Striebel
formula. In Section 3.1.2 of this thesis, we used the reference measure approach in order to
rederive a filtering equation for the filtering problem with point process observations.

A.2 Discrete and Continuous Autoregressive Processes
In section 3.3.1, we introduced the continuous-time autoregressive (CAR) process of order
p, which is the solution to an order-p SDE, written formally as

U
(p)
t + ap−1U

(p−1)
t + ...+ a0Ut = bζt, (A.31)
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where ζ(t) is a white-noise process, i.e.

E [ζt] = 0, E [ζtζt+τ ] = δ(τ). (A.32)

On the other hand, the discrete-time autoregressive process of order p is a countable collec-
tion of random variables satisfying the recursive law

Vn =

p∑
i=1

αiVn−i + φn, n ∈ Z (A.33)

where φn
i.i.d∼ N (0, σ2

φ). The goal of this section is to elucidate the relation between AR
and CAR processes of matching orders. In particular, we want to give conditions under
which the continuum limit of an AR process yields a CAR process and how they are related,
i.e. how the parameters αi, σ

2
φ of the AR process translate to parameters ai, b of the CAR

process and vice versa.

An example: p = 1

The general theme of the continuum limit or any time-scale transformation is that the pa-
rameters of the discrete-time models become functions of the time-discretization step ∆t
with certain asymptotics. In the case of an AR(1) process,

Vt = α1Vt−1 + φt, (A.34)

it is required that α1 = 1−a0∆t+O
(
∆t2

)
and σ2

φ = b2∆t+O
(
∆t2

)
in order for the con-

tinuum limit to be a non-trivial process. Under the condition that these asymptotics hold,
the limit is a CAR(1) or OU process with parameters a0, b2. In the case that the higher-
order terms vanish, the AR(1) corresponds exactly to the Euler-Maruyama discretization,
but there is an infinite class of other discretizations which all converge to the OU process.
It is not the case however that any AR(1) process – with arbitrary functions α1(∆t) and
σ2
φ(∆t) – is a discretization of the CAR(1) process.

While the condition that the limit be non-trivial can only give the linear terms in of the
∆t dependence, the assumption of time-scale invariance can give terms of arbitrary order.
The argument is as follows. The AR(1) recursion law can be used to write a law spanning
two timesteps, i.e.

Vt+1 = α1Vt + φt+1, (A.35)
Vt+2 = α1Vt+1 + φt+2

= α2
1Vt + α1φt+1 + φt+2.

(A.36)

If we expand the functions α1 and σ2
φ to second order in ∆t,

α1(∆t) = A0 +A1∆t+
1

2
A2∆t2 +O

(
∆t3

)
, (A.37)

σ2
φ(∆t) = B0 +B1∆t+

1

2
B2∆t2 +O

(
∆t3

)
(A.38)
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and demand that Vt+2 = α1(2∆t) + φ′
t+2 with Var(φ′

t+2) = σ2
φ(2∆t), we obtain condi-

tions on the coefficients which read as follows
A2

0 = A0, (A.39)
A0A1 = A1, (A.40)

A2
1 +A0A2 = 2A2, (A.41)

A2
0B0 = 0, (A.42)

(1 +A2
0)B1 + 2A0A1B0 = 2B1, (A.43)

2A0A1B1 +
1

2
(A2

0 + 1)B2 + (A2
1 +A0A2)B0 = 2B2. (A.44)

This system of nonlinear equations has two classes of solutions. The first reads

α1(∆t) = 1 +A1∆t+
1

2
A2

1∆t2 +O
(
∆t3

)
, (A.45)

σ2
φ(∆t) = B1∆t+A1B1∆t2 +O

(
∆t3

)
, (A.46)

for some arbitrary nonzero A1, B1. The second solution reads,

α1(∆t) = A1∆t+
1

4
A2

1∆t2 +O
(
∆t3

)
, (A.47)

σ2
φ(∆t) = B0 +

1

3
A2

1B0∆t2 +O
(
∆t3

)
, (A.48)

for some A1, B0. Both solutions are time-scale invariant in discrete-time (to second order
in ∆t), but whereas the first solution yields the OU process in the continuum limit, the
continuum limit of the second solution is ill-defined unless B0 = 0. We thus see that time-
scale invariance even to second order is an insufficient condition for the correct asymptotics.
It is however the case that a set of coefficients with the correct asymptotics yields time-scale
invariance to first order in ∆t.

Another example: p = 2

Now we would like to make a similar argument to find the asymptotics for p = 2. The
AR(2) process

Vt = α1Vt−1 + α2Vt−2 + φt, (A.49)
can be put in a vector form(

Vt

Vt−1

)
=

(
α1 α2

1 0

)(
Vt−1

Vt−2

)
+

(
φt

0

)
. (A.50)

We now define a finite-difference operator T2 and a finite-difference state vector (Vt V̇t)
⊤:

T2 =

(
1 0

∆t−1 −∆t−1

)
,

(
Vt

V̇t

)
= T2

(
Vt

Vt−1

)
, (A.51)

whereupon we obtain

∆t−1

(
Vt − Vt−1

V̇t − V̇t−1

)
= ∆t−1

[
T2

(
α1 α2

1 0

)
T−1
2 − 1

](
Vt−1

V̇t−1

)
+∆t−1T2

(
φt

0

)
=

(
∆t−1(α1 + α2 − 1) −α2

∆t−2(α1 + α2 − 1) −∆t−1(1 + α2)

)(
Vt−1

V̇t−1

)
+

(
∆t−1φt

∆t−2φt

)
.

(A.52)
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In the continuum limit the LHS reads (V̇t V̈t)
⊤, so in accordance with a CAR(2) process,

we should have(
∆t−1(α1 + α2 − 1) −α2

∆t−2(α1 + α2 − 1) −∆t−1(1 + α2)

)
∆t→0−→

(
0 1

−a0 −a1

)
, (A.53)

as well as
∆tVar(∆t−2φt)

∆t→0−→ σ2. (A.54)
From (A.54) we deduce without further ado that

σ2
φ = σ2∆t3 +O

(
∆t4

)
, (A.55)

and we also see, by looking at the lower row of (A.53) that

α1 + α2 − 1 = −a0∆t2 +O
(
∆t3

)
, (A.56)

1 + α2 = a1∆t+O
(
∆t2

)
, (A.57)

from which we can conclude that
α1 = 2− a1∆t− ξa0∆t2 +O

(
∆t3

)
,

α2 = −1 + a1∆t− (1− ξ)a0∆t2 +O
(
∆t3

)
,

(A.58)

for some ξ ∈ R. Thus for any CAR(2), there is a one-parameter family of AR(2) processes
which converge to that CAR(2) process in the continuum. The higher-order terms can
be fixed by time-scale invariance. Indeed, a calculation analogous to what we did in the
previous section forp = 1 shows that time-scale invariance fixes

ξ = 1− a21
2a0

. (A.59)

Arbitrary p

For a general p, we can use the same framework in order to obtain a mapping from CAR(p)
to AR(p) processes. The parameters of the discrete-time process read, as a function of the
parameters of the continuous-time counter-part2

σ2
φ = σ2∆t2p−1 +O

(
∆t2p

)
, (A.60)

αi = (−1)i−1

(p
i

)
−

p∑
j=1

(
p− j

i− 1

)
ap−j∆tj

+O
(
∆tp+1

)
, (A.61)

which for p = 2 yields the solution (A.58) with α = 1. For p > 2 the symmetry which
gives multiple solutions seems to be absent.

How big is the class of AR(p) processes which converge to one given CAR(p) process?
To answer this question, we need to restrict the infinite-dimensional space of functions
R≥0 → Rp describing how the parameters of the AR(p) evolve as a function of ∆t (we can
restrict ourselves to the class of AR(p) processes where the variance is a monomial in ∆t,
such that it has no free parameters due to (A.60)). If we further restrict the parameters αi

to be polynomials of order q ≥ p in ∆t, we have p(q + 1) parameters to fix. Out of those,
p(p + 1) are given by (A.61). The remaining p(q − p) parameters define the manifold of
solutions.

2The convention is that
(
i
j

)
= 0 if j > i.
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A. Appendix

A.3 Proof of the Normalization of the Adaptive Point Process
We want to prove that the expression for the probability of a sequence of events of the
adaptive point process reads

P
(
N[0,t] = {t1, ..., tn} |X[0,t]

)
= exp

[
−
∫ t

0
g(Xs, {ti ≤ s} , s)ds

]
×

∏
0≤tn≤t

g(Xtn , {ti ≤ tn} , tn). (A.62)

This is equivalent to asking whether the expression is normalized. We define the probability
p(n, t) of having n spikes within the interval [0, t] as

p(0, t) = P
(
N[0,t] = {} |X[0,t]

)
,

p(n, t) =

∫ t

0
dtn

∫ tn

0
dtn−1...

∫ t2

0
dt1 P

(
N[0,t] = {t1, ..., tn} |X[0,t]

)
, n ≥ 1.

(A.63)

We want to prove that

N (t) =

∞∑
n=0

p(n, t) = 1, T ≥ 0 (A.64)

We have
p(0, 0) = 1, p(n, 0) = 0, n ≥ 1 ⇒ N (0) = 1 (A.65)

and thus the normalization is correct for t = 0. To complete the proof, we show that the
derivative of N vanishes. The derivative of the first term in the sum reads

∂

∂t
p(0, t) =

∂

∂t
exp
[
−
∫ t

0
g(Xs, {} , s)ds

]
= −g(Xt, {} , t) exp

[
−
∫ t

0
g(Xs, {} , s)ds

] (A.66)

For n ≥ 1, we use the following property

g(t) =

∫ t

0
f(t, t′)dt′ ⇒ g′(t) = f(t, t) +

∫ t

0

∂f(t, t′)

∂t
dt′ (A.67)

and compute

∂

∂t
p(n, t) =

∫ t

0
dtn−1...

∫ t2

0
dt1 g(Xt, {t1, ..., tn−1} , t)

× P
(
N[0,t] = {t1, ..., tn−1} |X[0,t]

)
−
∫ t

0
dtn...

∫ t2

0
dt1 g(Xt, {t1, ..., tn−1, tn} , t)

× P
(
N[0,t] = {t1, ..., tn} |X[0,t]

)
, n ≥ 1.

(A.68)

We define a quantity Rn(t) as

Rn(t) =

∫ t

0
dtn...

∫ t2

0
dt1 g(Xt, {t1, ..., tn−1, tn} , t)

× P
(
N[0,t] = {t1, ..., tn} |X[0,t]

) (A.69)
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A.3. Proof of the Normalization of the Adaptive Point Process

which allows us to write
∂

∂t
p(n, t) = Rn−1(t)−Rn(t), n ≥ 1,

∂

∂t
p(0, t) = −R0(t) (A.70)

Under the assumption that R(t) =
∑∞

n=0Rn(t) (the expectation of the firing rate at time t,
given all possible spike histories with n spikes) is finite, we can use re-ordering of the series
to prove that the derivative of the normalization vanishes:

∂

∂t
N (t) =

∂

∂t

∞∑
n=0

p(n, t)

=

∞∑
n=0

∂

∂t
p(n, t)

= −R0(t) +

∞∑
n=1

(Rn−1(T )−Rn(t)) = 0.

(A.71)
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List of Mathematical Symbols

.
= Is defined to be equal to
∼ Is distributed according to
≈ Is approximately equal to
E [X] Expectation of X
E [Xt|F ] Conditional expectation of Xt under the filtration Ft

Ft Filtration
dXt Stochastic differential of the process Xt

∂x Partial differential operator with respect to the variable x
Wt Value of the standard Wiener process at time t ≥ 0
δ Dirac delta distribution
H Heaviside function
L Generator of a diffusion process
L† Fokker-Planck operator of a diffusion process, adjoint of L
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