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Abstract

In this master thesis, the goal is to shed some light on the relations
and differences between gravity and gauge theory. The Einstein-Cartan
formulation of general relativity is reviewed and the three-dimensional
theory is formulated as a Chern-Simons gauge theory. The four-dimen-
sional case is briefly discussed.
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1 Introduction

What is the connection between gravity and gauge theory? This was the
question that led to this master thesis. While it is true that some similarities
with the gauge theories are already visible in the theory of General Relativity
as it was originally set up by Einstein, most of these common features are
somewhat buried inside the formalism of tensor calculus.

Gravity is a theory which takes a manifold and endows it with a geometry.
This geometry is usually described in terms of a (pseudo)-Riemannian metric
which is the fundamental degree of freedom in Einstein gravity. In contrast,
most gauge theories are set up on a background metric. Moreover, gauge
theories describe the dynamics of a connection (the gauge field) while the
Levi-Civita connection in Einstein gravity has no dynamics of its own.

The reformulation of gravity as a gauge theory thus happens in several
steps. The different conceptual changes will be described in detail in the
following chapters. Chapter 2 will deal with recasting Einstein gravity in a
language more amenable to the gauge approach. First, we will replace the
metric, which is a complicated object, by a simpler one, namely the metric
of a flat space of the same signature. In a curved space, no coordinate trans-
formation can accomplish this, but we can get this simplification by using
vielbeins, which will be one part of the new fundamental variables. This will
introduce a gauge freedom of local frame rotations preserving the flat metric.
Secondly, the use of differential forms will make it possible to simplify most of
the computational issues by enabling covariant differentiation without needing
a metric. The final step which then paves the way towards a gauge theory of
gravity will be to pass from the Levi-Civita connection to a more general one.
This so-called spin connection will have new degrees of freedom living in a Lie
algebra (akin to a gauge connection). The Palatini action of gravity which
is used in this approach is first-order in the fundamental variables, and the
torsion-free connection will be retrieved dynamically. This entire framework
is called the Einstein-Cartan formulation of gravity.

The idea which leads to gauge gravity is a unification of the spin connec-
tion and the vielbeins in a gauge field of some larger group. This is the easy
part. The difficult part is to find a background-independent and gauge invari-
ant action which is equivalent to the Palatini action. In the third chapter, this
will be carried out in three dimensions, where the Chern-Simons action fills
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2 CHAPTER 1. INTRODUCTION

this purpose. The Chern-Simons formulation of gravity is very simple because
gravity in three dimensions has no local degrees of freedom. Nevertheless,
there are some subtleties concerning gauge transformations. The larger group
means that Chern-Simons gravity has more symmetries than we are accus-
tomed to. In particular, every classical solution of Chern-Simons gravity is a
flat connection and therefore gauge equivalent to the trivial solution. Since
the trivial solution represents a degenerate geometry, it is unclear what the
gauge symmetry actually means in the context of gravity.

In the last chapter, an attempt will be made at using this approach in
four dimensions. The kinematical part is as easy as in three dimensions, and
Cartan geometry explains this very nicely. Finding a suitable action principle
however is presently an open problem. One possibility is the MacDowell-
Mansouri formulation, but the action is not gauge invariant. It is however
possible to set the theory up for spontaneous symmetry breaking. The ensuing
Stelle-West model will also be presented.

1.1 Literature

Most of the matters discussed in this thesis can be found in various articles
and books of which I would like to list the ones that were particularly helpful.

The first-order formulation of gravity is reviewed in the first two chapters
of [10]. The Chern-Simons formulation in 2+1 dimensions is presented in [9].

The mathematics of Cartan geometry and its relation to the gauge the-
ory formulations of gravity are discussed by Wise in [7]. The mathematical
background can be found in [6]. A shorter discussion can be found in [8],
which also covers the scalar products on the six-dimensional Lie algebras of
Chern-Simons gravity. An interesting treatment of gauge transformations and
diffeomorphisms is found in Matschull’s paper [4].

A very good paper on gauge gravity by Randono [5] includes MacDowell-
Mansouri and the Stelle-West model. Randono also touches on aspects of
quantization and is therefore recommended if one wants to go beyond the
scope of this thesis. For the quantization in 2+1 dimensions, the work of
Carlip has to be mentioned, in particular [1, 2].



2 Einstein-Cartan Gravity

The theory of gravity is built on the principle of General Covariance under
coordinate transformations. For this reason, it is usually presented in the
language of tensor calculus.

In this chapter, a quick review of General Relativity is given first. Then,
the theory is re-expressed in a more coordinate-independent manner by intro-
ducing vielbeins and differential forms. Lastly, the new language is used to
write down a first order action which yields the Einstein equations in arbitrary
dimensions.

2.1 Review of General Relativity

The starting point for our discussion of general relativity is that spacetime is
a pseudo-Riemannian manifold, equipped with a metric tensor or line element

ds2 = gµνdx
µdxν (2.1)

which defines the effect of the gravitational force on freely falling observers
through the action principle δ

∫
dτ = 0. The resulting Euler-Lagrange equa-

tions, also known as the geodesic equations,

ẍλ(τ) + Γλµν ẋ
µẋν = 0 (2.2)

contain the metric tensor through the Christoffel symbols

Γλµν = 1
2g
λρ (∂νgρµ + ∂µgρν − ∂ρgµν) (2.3)

which are the components of the so-called Levi-Civita connection. The latter is
singled out from an infinite set of connections by two conditions, namely metric
compatibility and the vanishing of torsion. Let us recall what these conditions
mean and how they are uniquely solved by the Levi-Civita connection.

An arbitrary affine connection ωλµν need not be related to any metric
structure. However, it defines a covariant derivative Dν given by the following
action on a vector field1

DνV
µ = ∂νV

µ + ωµνρV
ρ (2.4)

1The action on an arbitrary tensor follows from the requirement that Dν satisfy the
Leibniz rule.
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4 CHAPTER 2. EINSTEIN-CARTAN GRAVITY

This derivative is tensorial provided that under coordinate transformations
xµ → yµ the connection transforms as

ωλµν →
∂xσ

∂yν
∂xρ

∂yµ

(
ωγρσ

∂yλ

∂xγ
− ∂

∂xσ
∂yλ

∂xρ

)
(2.5)

The geometric significance of any connection is that it provides a notion of
parallelism. A quantity T (scalar or tensor) is said to be parallel transported
along a curve xµ(τ) if ẋνDνT = 0. And this is the point where the metric
potentially comes into play. If there is a metric on the manifold, it is natural
to assume that the connection is in some sense compatible with it. Commonly,
one assumes that the angle between two vectors (as given by the metric tensor)
should be preserved by parallel transport along any curve, i.e.

ẋρDρ(gµνV
µW ν) = 0 (2.6)

which is only possible if the metric is covariantly constant, i.e. Dρgµν = 0. If
this is spelt out, the condition of metricity reads

∂ρgµν − ωσρµgσν − ωσρνgµσ = 0⇔ ∂ρgµν = ωνρµ + ωµρν (2.7)

This does not yet suffice to single out a unique connection. Therefore, another
requirement is usually postulated, namely that parallel transport should be
path-independent for scalar quantities, that is,

[Dµ, Dν ]φ
!

= 0 (2.8)

Since the covariant derivative reduces to the ordinary one on scalars, expand-
ing the right-hand side leads to

[Dµ, Dν ]φ = Dµ∂νφ−Dν∂µφ

= ∂µ∂νφ− ∂ν∂µφ−
(
ωρµν − ωρνµ

)
∂ρφ

= −
(
ωρµν − ωρνµ

)
∂ρφ

(2.9)

where in the last step we used the fact that ordinary partial derivatives com-
mute. It turns out that (2.8) can be satisfied only if the connection is sym-
metric in the two lower indices,

ωρµν = ωρνµ (2.10)

or, equivalently, if the torsion tensor vanishes,

T ρµν = ωρµν − ωρνµ = 0 (2.11)

and that is why this condition is called the ’no-torsion’ condition.
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Together, equations (2.7) and (2.10) imply that ωλµν = Γλµν as defined
in (2.3)2. For the rest of this section, we work exclusively with the Levi-
Civita connection and call its covariant derivative ∇µ. As already mentioned,
the second covariant derivatives do not commute on vectors. Instead, the
commutator is proportional to the same vector

[∇µ,∇ν ]V λ = RλσµνV
σ (2.14)

with Rλσµν the Riemann Curvature Tensor. An explicit calculation shows that

Rλσµν = ∂µΓλσν − ∂νΓλσµ + ΓλρµΓρσν − ΓλρνΓρσµ (2.15)

The Einstein-Hilbert action

The problem of finding a suitable action which yields the Einstein equations
is essentially solved by considering the simplest scalar which contains at most
second derivatives of the metric. One can obtain such a quantity from con-
tractions of the Riemann Tensor. The only nontrivial contraction is

Rµν = Rλµλν (2.16)

which is called the Ricci tensor. Taking its trace, one arrives at the Ricci
scalar,

R = gµνRµν = Rµνµν (2.17)

One can also add a dimensionful constant Λ, and write down the Einstein-
Hilbert action with cosmological constant,

SEH [gµν ] =

∫
d4x
√
g(R− 2Λ) (2.18)

It can be shown that variation of this action with respect to the metric yields
the vacuum Einstein equations with cosmological constant

Gµν = Rµν − 1
2Rgµν = −Λgµν (2.19)

2The trick to prove this is to use the fact that the Levi-Civita connection is metric
compatible and torsion-free,

∂ρgµν = Γνρµ + Γµρν , Γρµν = Γρνµ (2.12)

and to do some fancy manipulations

ωρµν
(2.10)

= 1
2

(ωρµν + ωνµρ) + 1
2

(ωρνµ + ωµνρ)− 1
2

(ωνρµ + ωµρν)

(2.7)
= 1

2
∂µgνρ + 1

2
∂νgµρ − 1

2
∂ρgµν

(2.12)
= 1

2
(Γρµν + Γνµρ) + 1

2
(Γρνµ + Γµνρ)− 1

2
(Γνρµ + Γµρν)

(2.12)
= Γρµν

(2.13)
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but we shall derive this in the simpler framework of differential forms (see
equations (2.87) to (2.114)). There is another way of writing the vacuum
Einstein equations. By tracing the Einstein tensor, one finds

R =
2n

n− 2
Λ (2.20)

and one can substitute this back into the Einstein equation, which leads to

Rµν =
2

n− 2
Λgµν (2.21)

2.2 Vielbeins

Instead of working with the cotangent space of the manifold, one uses an
isomorphism to move to an auxiliary vector space

ea = eaµdx
µ (2.22)

Here, dxµ is a coordinate basis of the cotangent space, ea is the basis of the
new vector space and eaµ is the matrix representation of the isomorphism
connecting the two spaces, also called the vielbein field. The new space is also
called the coframe space and ea is said to have internal indices while dxµ has
ordinary spacetime indices. Both sets of indices range from 1 to n, where n
denotes the number of dimensions.

Also the basis vectors of the tangent space can be mapped to the dual
vector space of the one just introduced

Ea = ẽµa∂µ (2.23)

Vectors from the coframe space act as linear forms on vectors from the frame
space. If we want the two bases we just introduced to be dual then ẽµb must
be the inverse of the vielbein field,

δab
!

= eaEb = eaµdx
µeνb∂ν = eaµẽ

µ
b (2.24)

The vielbein and its inverse can be used to move any spacetime tensor to the
corresponding tensor product of the coframe space or its dual. Thus, if we
have a tensorial object

T = Tµ1,...,µmν1,...,νn dxν1 ⊗ ...⊗ dxνn ⊗ ∂µ1 ⊗ ...⊗ ∂µm (2.25)

we can re-express it in the new basis as

T = T a1,...,amb1,...,bn
eb1 ⊗ ...⊗ ebn ⊗ Ea1 ⊗ ...⊗ Eam (2.26)

where the coefficients are now given by

T a1,...,amb1,...,bn
= ea1µ1 ...e

am
µme

ν1
b1
...eνnbnT

µ1,...,µm
ν1,...,νn (2.27)
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Strictly speaking, the new object is in a different tensor space than the old
one, but we will use the same symbol, albeit with a different set of indices.
For most purposes, it is not even necessary to think of the coframe as living
in another space. One can simply regard the vielbein as a change of basis in
the cotangent space, from a coordinate base to a more general one.

Let us apply the aforementioned conversion to the metric tensor:

gab = eµae
ν
bgµν (2.28)

This object defines a scalar product in the abstract analogue of the tangent
space which is compatible with the change of basis, i.e. gabV

aV b = gµνV
µV ν .

It also consistently lowers an internal contravariant index

gabV
b = eµae

ν
bgµνe

b
ρV

ρ

= eµagµνV
ν

= eµaVµ

= Va

(2.29)

Since the spacetime metric can be diagonalized by the vielbein (point-wise
and in a smooth way), we can write

eµae
ν
bgµν = ηab (2.30)

where ηab is any fixed metric with the same signature as gµν . A choice of viel-
bein which accomplishes this is called an orthogonal vielbein, and the coframe
is called an orthogonal frame. Inverting equation (2.30) yields

gµν = eaµe
b
νηab (2.31)

and this means that there is a one-to-one correspondence between the metric
and the vielbeins. If a fixed internal metric ηab is chosen, the spacetime metric
is then determined by the vielbein. One can as well use the vielbeins instead
of the metric components as fundamental variables of gravity.

Of course, the vielbein has a priori more independent components that the
metric. But it is not unique. Namely, if ea is an orthogonal coframe and Λab a
transformation preserving ηab (called a local frame rotation), the transformed
coframe

ẽa = Λabe
b (2.32)

is also non-singular (because frame rotations are invertible) and orthogonal,
as we can check by explicit calculation

ηabẽ
a
µẽ
b
ν = ηabΛ

a
cΛ

b
de
c
µe
d
ν = ηcde

c
µe
d
ν = gµν (2.33)

This means that we have the same number of local degrees of freedom in
the metric tensor and in the orthogonal vielbein. The metric tensor in n
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dimensions has 1
2n(n + 1) independent components because it is symmetric.

The vielbein has a priori n2 entries, but the group of frame rotations has
1
2n(n − 1) generators. Thus, the number of independent components in the
vielbein is

n2 − 1
2n(n− 1) = 1

2n(n+ 1) (2.34)

the rest being gauge degrees of freedom. The further development of the
theory needs to preserve this gauge symmetry. The formalism is very useful
in that respect because any tensor under general coordinate transformations,
when converted by vielbeins, maps to a tensor under local frame rotations.

2.3 Differential forms

One problem of ordinary tensor calculus is that it cannot be made generally
covariant without introducing a metric or a connection. If we restrict ourselves
to antisymmetric tensors, it is possible to set up a fully covariant calculus in
absence of any additional structures. Let us see how differential forms just do
that in a very simple way.

A differential p-form is a section of the p-th exterior power of the cotangent
bundle of the manifold Λ(p)(M). In a local coordinate basis, it can be written
as

A(p) =
1

p!
Aµ1µ2...µpdx

µ1 ∧ dxµ2 ∧ ... ∧ dxµp (2.35)

where ∧ is called the wedge product. It satisfies

A(p) ∧A(q) = (−1)pqA(q) ∧A(p) (2.36)

and the coefficients Aµ1µ2...µp can always (without loss of generality) be taken
to be totally antisymmetric. Any antisymmetric tensor with more than n
indices (where n denotes the dimension of the manifold) is necessarily zero.
Thus there are n + 1 bundles of non-zero (fiber) dimension. The list starts
with Λ(0)(M), the space of real functions on M . Λ(1)(M) is the cotangent
bundle, which is n-dimensional, and so forth. Finally, the bundle of top-
forms, Λ(n)(M) is again one-dimensional. The dimension of the intermediate
powers is

dim Λ(p)(M) =

(
n

p

)
(2.37)

Using vielbeins, we can express any differential form in a coframe basis

A(p) =
1

p!
Aa1a2...ape

a1 ∧ ea2 ∧ ... ∧ eap (2.38)

and to simplify the notation, one often writes the product of coframes using
the abbreviation

ea1 ∧ ea2 ∧ ... ∧ eap = ea1a2...ap (2.39)
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Exterior derivative

We can define an exterior derivative operator d which turns any p−form into
a p+ 1−form. In a coordinate basis, it is defined3 locally as

dA(p) = ∂ρdx
ρ ∧A =

1

p!
∂ρAµ1µ2...µpdx

ρ ∧ dxµ1 ∧ dxµ2 ∧ ... ∧ dxµp (2.40)

and satisfies a graded Leibniz rule

d
(
A(p) ∧B(q)

)
= dA(p) ∧B(q) + (−1)pA(p) ∧ dB(q) (2.41)

Since second partial derivatives commute, applying the exterior derivative
twice leads to

d2A(p) ∼ ∂ρ∂σAµ1µ2...µpdxρ ∧ dxσ ∧ ...
= ∂σ∂ρAµ1µ2...µpdx

ρ ∧ dxσ ∧ ...
= −∂σ∂ρAµ1µ2...µpdxσ ∧ dxρ ∧ ...
∼ −d2A(p)

(2.42)

and hence
d2 = 0 (2.43)

Let us illustrate this with an example. Let the 1-form A = Aµdx
µ denote a

U(1) gauge field. If we define a corresponding 2-form F = dA, we obtain

F = ∂µAνdx
µ ∧ dxν

= 1
2(∂µAν − ∂νAµ)dxµ ∧ dxν

(2.44)

from which we can read off that the components of F = 1
2Fµνdx

µ ∧ dxν are
given by Fµν = ∂µAν − ∂νAµ which reproduces the correct expression for an
abelian field strength. The homogeneous Maxwell equations dF = d2A = 0
are a trivial consequence of equation (2.43). For the very same reason the
field strength is invariant under an abelian gauge transformation A→ A+df .

Interior derivative

There is another derivative on differential forms which is also called the con-
traction operator because it contracts a vector field V = V µ∂µ with the dif-
ferential p-form A(p) to produce a (p− 1)-form

iVA
(p) =

1

(p− 1)!
V µ1Aµ1µ2...µpdx

µ2 ∧ ... ∧ dxµp (2.45)

It is called a derivative because it also satisfies the graded Leibniz rule

iV

(
A(p) ∧B(q)

)
= iVA

(p) ∧B(q) + (−1)pA(p) ∧ iVB(q) (2.46)

3Of course, this can only work since ∂[ρAµ1µ2...µp] is a tensor.
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The fact that the 1-forms dxµ and the vector fields ∂µ are dual is expressed as

iµdx
ν = δνµ (2.47)

where iµ = i∂µ . We can also express contractions in terms of the general bases
ea and Ea. If we have a vector field V = V aEa and denote iEa = ia, we have

iVA
(p) = V aiaA

(p) (2.48)

and the duality in (2.47) now means that

iae
b = δba (2.49)

Among others, the property

ea ∧ iaA(p) = pA(p) (2.50)

is particularly useful.

Hodge duality

The exterior algebra of differential forms has a very nice property, already
expressed in (2.37), namely that p-forms and (n − p)-forms have the same
number of independent components. If we have a metric on our manifold
(and this is the first time since our introduction of differential forms that we
actually need one), we can define an isomorphism between any two bundles of
the same dimension. This is called the Hodge duality. The Hodge dual ∗A(p)

of a p-form is the (n− p)-form defined (in a general frame), as

∗A(p) =
1

p!
Aa1a2...ap ∗ ea1a2...ap (2.51)

where

∗ea1a2...ap =
|g|1/2

(n− p)!
ga1b1ga2b2 ...gapbpεb1b2...bpbp+1...bne

bp+1...bn (2.52)

where εb1b2...bn is the completely antisymmetric tensor in n dimensions. Al-
though this expression may look complicated, it does a very simple thing. In
an orthogonal frame, where gab = ηab and |g| = 1, (2.52) simplifies to

∗ea1a2...ap =
1

(n− p)!
ε
a1a2...ap

ap+1...ane
ap+1...an (2.53)

Thus, the Hodge dual simply selects all the vielbeins which are orthogonal to
the original ones. In n = 3 Euclidean space, for example,

∗1 = e123

∗e1 = e23, ∗e2 = e31, ∗e3 = e12

∗e12 = e3, ∗e23 = e1, ∗e31 = e2

∗e123 = 1

(2.54)
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In this example we also see that the square of the Hodge operator is one. In
general this is not the case, but almost,

∗2A(p) = (−1)p(n−p)sign (g)A(p) (2.55)

Combining the Hodge star and exterior derivatives, one can write down a large
number of equations. Revisiting the example of Maxwell theory, we can now
also write the inhomogeneous equations in four dimensions,

∇µFµν = −Jν (2.56)

in terms of differential forms. We had introduced the field strength F . Let us
take its dual

∗F = 1
2Fµν

1
2 |g|

1/2 gµρgνσερσλγdx
λ ∧ dxγ

= 1
4 |g|

1/2 εµνρσF
µνdxρ ∧ dxσ

(2.57)

if we compute the derivative d ∗ F , we obtain

d ∗ F = 1
4εµνρσ∂λ

(
|g|1/2 Fµν

)
dxλ ∧ dxρ ∧ dxσ (2.58)

and when acted upon with another Hodge star, after a few steps, this turns
into

∗d ∗ F = 1
4 |g|

1/2 gλαgρβgστ εαβτγεµνρσ∂λ

(
|g|1/2 Fµν

)
dxγ

= 1
4g
−1 |g|1/2 ελξρσεµνρσgξγ∂λ

(
|g|1/2 Fµν

)
dxγ

= 1
2 |g|

−1/2
(
δλµδ

ξ
ν − δξµδλν

)
gξγ∂λ

(
|g|1/2 Fµν

)
dxγ

= gνγ |g|−1/2 ∂µ
(
|g|1/2 Fµν

)
dxγ

(2.59)

Now, since the covariant divergence ∇µFµν of an antisymmetric tensor (such
as the field strength) can be written as

∇µFµν = |g|−1/2 ∂µ
(
|g|1/2 Fµν

)
(2.60)

our expression ∗d∗F is just the one that is needed. Using (2.56), we can write

∗d ∗ F = gνγ∇µFµνdxγ

= −Jµdxµ
(2.61)

Therefore, the inhomogeneous Maxwell equations read

∗d ∗ F = −J (2.62)

And this is certainly easier to work with. For example, by using the Maxwell
equations, (2.55) and d2 = 0, we can easily get the conservation law

∗d ∗ J = − ∗ d ∗2 d ∗ F ∼ ∗d2 ∗ F = 0 (2.63)

which corresponds to the well-known equation ∇µJµ = 0.
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Integral calculus

Not only do differential forms provide us with a fully covariant differential
calculus, also integrals can be defined very conveniently. Any p−form can
be integrated over a p−dimensional submanifold Np of M by pulling it back
to a differential form on the parameter space which parametrizes Np and
which itself is a subset of Rp. In the case of zero-forms, this just gives the
evaluation at a specific point. In the case of one-forms, it is already more
interesting. Suppose we have a curve C in our manifold which is parametrized
by γ : I → M where I = [t1, t2] is some interval. Then any differential
one-form ω = ωµdx

µ can be integrated along C in the following way. First
the differential form ω is pulled back by γ. This reads

γ∗ω = ωµ
dxµ

dt
dt (2.64)

One can then define the integral of ω along C as the integral of the pullback
form over I ∫

C
ω =

∫
I
γ∗ω =

∫ t2

t1

ωµ
dxµ

dt
dt (2.65)

If the form to be integrated is exact, i.e. ω = dφ where φ is some function on
M , we have by the fundamental theorem of calculus∫

C
dφ =

∫ t2

t1

∂φ

∂xµ
dxµ

dt
dt

=

∫ t2

t1

d(φ ◦ γ)

dt
dt

= (φ ◦ γ)(t2)− (φ ◦ γ)(t1)

=

∫
∂C
φ

(2.66)

where ∂C is the oriented boundary of C consisting of the two endpoints. This
is but a special case of the famous Stokes’ theorem∫

Np
dω(p−1) =

∫
∂Np

ω(p−1) (2.67)

which holds for forms of any degree. The significance of this theorem for
physics is that is allows to get rid of total derivatives by shifting them to the
boundary.

Provided that the manifold is orientable, the form ∗1 represents the usual
integration measure ∫

M
∗1 =

∫
M
|g|1/2 dnx (2.68)

If one would like to write down an action principle involving a p-form A(p), one
must therefore turn it into a top-form in some way. This entails multiplying
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by an (n− p) form. The simplest product one can find is

A(p) ∧ ∗A(p) =
1

p!
Aa1a2...apA

a1a2...ap ∗ 1 (2.69)

In fact, when applied to the field strength F of a gauge theory, this yields the
Yang-Mills Lagrangian

F ∧ ∗F = 1
2FµνF

µν ∗ 1 (2.70)

2.4 Einstein gravity in terms of forms

Let us now translate the equations of general relativity into the language of
vielbeins and differential forms. As already exposed in section 2.2, the metric
is replaced by the coframe ea. What about the connection ωλµν? Equation
(2.5) tells us that its last index is tensorial. This means that it can be turned
into a one-form

ωλµ = ωλµνdx
ν (2.71)

How can the remaining, non-tensorial indices be converted to internal ones?
It easiest to do this in the special case in which the coframe field is just
another coordinate basis. This means that there are coordinates ξa such that
ea = dξa, and the vielbein is just the Jacobian eaµ = ∂ξa/∂xµ. In this case,
the transformation can be read off from (2.5) and in terms of the vielbeins, it
reads

ωab = eaµω
µ
νe
ν
b + eaµde

µ
b (2.72)

This will be adopted as the definition of the connection form in an arbitrary
frame. It ensures that under local frame rotations we have the transformation
law

ωab → Λacω
c
d(Λ
−1)db + Λacd(Λ−1)cb (2.73)

Therefore, we may introduce a covariant derivative with respect to frame
rotations

DωV
a = dV a + ωab ∧ V b (2.74)

The condition of metric compatibility now reads

Dωgab = 0 (2.75)

In an orthonormal frame, it turns into

Dωηab = 0⇒ ωab = −ωba (2.76)

which means that the connection has values in the Lie algebra of the group
of frame rotations. Together with equation (2.73) this tells us that ω is a
gauge field for the group of frame rotations. This very nice structure will be
exploited in the next chapters to write gravity as a gauge theory.
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At this point we may also define the curvature and torsion two-forms

Ωa
b = dωab + ωac ∧ ωcb (2.77)

T a = dea + ωac ∧ ec (2.78)

Let’s check by switching back to a coordinate basis that these definitions are
equivalent to the previously made ones. For the curvature form, this reads

Ωλ
σ = dωλσ + ωλρ ∧ ωρσ

= 1
2(∂µω

λ
σν − ∂νωλσµ

+ ωλρµω
ρ
σν − ωλρνωρσµ)dxµ ∧ dxν

= 1
2Ωλ

σµνdx
µ ∧ dxν

(2.79)

so Ωλ
σµν has indeed the same form as the Riemann curvature tensor. For the

torsion tensor, the calculation is analogous

T λ = ddxλ + ωλν ∧ dxν

= ωλµνdx
µ ∧ dxν

= 1
2

(
ωλµν − ωλνµ

)
dxµ ∧ dxν

= 1
2T

λ
µνdx

µ ∧ dxν

(2.80)

Since the curvature and torsion are tensors, the relationship between them
and their internal space analogues must be

Ωa
b = eaλΩλ

σe
σ
b (2.81)

T a = eaλT
λ (2.82)

but this could also be calculated directly from equations (2.77) and (2.78)
using (2.72).

By contracting the Riemann tensor, we obtain the Ricci tensor and scalar.
This is done by using the interior derivative

Ricci 1-form : Ωb = iaΩ
ab (2.83)

Ricci scalar : R = ibΩ
b = ibiaΩ

ab (2.84)

From this we can build the Einstein-Hilbert action

SEH [e] =

∫
∗R (2.85)

By making use of the product rule for interior derivatives, we can also write
the dual of the Ricci scalar as

∗R = ∗1 ibiaΩab

= (ibia ∗ 1) ∧ Ωab

= Ωab ∧ ∗eab
(2.86)
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It is now straightforward (and much easier than in the tensor formalism) to
derive the Einstein equations. The variation of the Einstein-Hilbert action
reads

δ

∫
Ωab ∧ ∗eab =

∫
δΩab ∧ ∗eab +

∫
Ωab ∧ δ ∗ eab (2.87)

If we demand that ω is the torsion-free and metric compatible Levi-Civita
connection, we have

Dωgab = 0

Dωe
a = 0

⇒ Dω ∗ ea1...ap = 0 (2.88)

and hence the first term of the variation is a total derivative, which is easy to
see by using the above and δΩab = Dωδωab

δΩab ∧ ∗eab = Dωδωab ∧ ∗eab = Dω(δωab ∧ ∗eab) = d(δωab ∧ ∗eab) (2.89)

The second term and hence the total variation reads

δSEH =

∫
δec ∧ Ωab ∧ ∗eabc = 0 (2.90)

and this yields the equations

Ωab ∧ ∗eabc = 0 (2.91)

To see that these are the Einstein equations, we define the Einstein 1-form

Ga = Ωa − 1
2Re

a (2.92)

and observe that its dual is proportional to equation (2.91)

Ωab ∧ ∗eabc = 1
2Ωabmne

mn ∧ ∗eabc

= 1
2Ωabmne

m ∧ (gna ∗ ebc + gnb ∗ eca + gnc ∗ eab)
= 1

2Ωabmn(gnbgma − gnagmb) ∗ ec

+ 1
2Ωabmn(gnagmc − gncgma) ∗ eb

+ 1
2Ωabmn(gncgmb − gnbgmc) ∗ ea

= −2 ∗ Ωc +R ∗ ec

= −2 ∗Gc

(2.93)

and therefore

Ωab ∧ ∗eabc = 0 ⇔ Gc = 0 (2.94)
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2.5 Palatini formulation of General Relativity

We present another way to obtain the Einstein equations which will turn out
to be much more useful. We make the following change: the connection is
treated as a dynamical field which is metric compatible but not torsion-free,
and we write down the so-called Palatini action

SPal [ω, e] =

∫
Ωab ∧ ∗eab (2.95)

which looks the same as the Einstein-Hilbert action. But it is now first-order
in the vielbein and the spin connection. In dimensions three and four in an
orthogonal frame, it reads

n = 3 : SPal [ω, e] =

∫
εabc Ωab ∧ ec (2.96)

n = 4 : SPal [ω, e] =
1

2

∫
εabcd Ωab ∧ ecd (2.97)

respectively. But let us derive the equations of motion of the Palatini action
in arbitrary dimension. The variation of (2.95) with respect to ec gives rise
to the Einstein equations

Ωab ∧ ∗eabc = 0 (2.98)

The variation of the curvature can be written as∫
δΩab ∧ ∗eab =

∫
δωab ∧Dω ∗ eab (2.99)

Thus, the corresponding field equation reads

Dω ∗ eab = 0 ⇒ T a ∧ eb = T b ∧ ea (2.100)

from which we would like to deduce T a = 0. This is particularly simple in 3
dimensions since the equation reads

Dω ∗ eab = Dωε
ab
ce
c = εabcT

c = 0 ⇒ T a = 0 (2.101)

In dimension n ≥ 4, we can contract (2.100) with ia and obtain

(n− 3)T b = (iaT
a) ∧ eb (2.102)

Further contraction by ib yields

(2n− 3)ibT
b = (ibiaT

a)eb (2.103)

If this is substituted into equation (2.102) it implies

T a = αce
ca, αc =

2n− 3

n− 3
icibT

b (2.104)
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and therefore (using (2.100) again in the last step)

T a ∧ eb = αce
cab = −T b ∧ ea

⇒ T a ∧ eb = 0
(2.105)

At this point it is clear that this can only be solved if the torsion is zero, hence

T a ∧ eb = T b ∧ ea ⇒ T a = 0 (2.106)

The torsion-free connection is thus restored by the dynamics. This lucky coin-
cidence breaks down if matter fields are introduced. In Einstein gravity, they
couple to the Levi-Civita connection, which is torsion-free from the outset. In
the Palatini framework, however, they couple to the spin connection and the
dynamical torsion is no longer zero,

T ∼ δSMatter

δω
(2.107)

which means that the Palatini formulation is no longer equivalent to the
Einstein-Hilbert action.

So far for the vacuum equations. In order to add a cosmological constant,
the action (2.95) is complemented by a volume form

SPal [ω, e] =

∫
Ωab ∧ ∗eab − 2Λ

∫
∗1 (2.108)

Since δ ∗ 1 = δea ∧ ∗ea, the variation with respect to ωab remains unchanged
and produces T a = 0 as before. On the other hand, the Einstein equations
turn into

Ωab ∧ ∗eabc − 2Λ ∗ ec = 0 (2.109)

We require that the maximally symmetric spaces, which satisfy

Ωab = kl−2eab (2.110)

are a particular solution of the Einstein equations with cosmological constant.
One can derive a relation between the length scale l of these spaces and the
parameter Λ by plugging (2.110) into (2.109)

Ωab ∧ ∗eabc − 2Λ ∗ ec = kl−2eab ∧ ∗eabc − 2Λ ∗ ec

=
(
kl−2(n− 1)(n− 2)− 2Λ

)
∗ ec

⇒ Λ = 1
2(n− 1)(n− 2)kl−2

(2.111)

After substituting this back into (2.109), in dimension three and four we can
write the Einstein equations as

n = 3 : Ωab = kl−2eab (2.112)

n = 4 : εabcd

(
Ωab − kl−2eab

)
∧ ec = 0 (2.113)
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In three dimensions, there are no local degrees of freedom, hence every space-
time is locally either Minkowski space, de Sitter or anti-de Sitter, depending
on the sign of the cosmological constant. In four dimensions, the dynamics are
more complicated, allowing for local phenomena such as gravitational waves.

In arbitrary dimension, there is another more familiar form of Einsteins
equations with cosmological constant, namely

Ga = Ωa − 1
2Re

a = −Λea (2.114)

As in the tensorial language, this is not the simplest form in which to write
these equations. Indeed, by contracting with ia, we obtain

R =
2n

n− 2
Λ = n(n− 1)kl−2 (2.115)

and then, by substituting this back into (2.114),

Ωa =
2

n− 2
Λea = (n− 1)kl−2ea (2.116)

2.6 Summary

Let us summarize what was accomplished in the present chapter. We started
out with conventional Einstein gravity, where the dynamical variables are the
components of the metric tensor gµν and the Levi-Civita connection is uniquely
determined by the metric.

We then trivialized the metric to ηab using vielbeins as the new degrees
of freedom, thereby introducing a gauge symmetry of local frame rotations
preserving ηab.

As a consequence, the connection 1-form ω is valued in the Lie algebra of
frame rotations, its field strength given by the curvature 2-form Ω = dω+ω∧ω.
The torsion T was not put to zero by hand. Instead, the Palatini action took
care of this and also yielded the Einstein equations.



3 Chern-Simons Gravity

Non-abelian gauge theories are a very successful tool in modern physics. In-
teractions between matter fields arise as a consequence of a local symmetry
and the action principle for a given gauge group and field content is highly
restricted. In this chapter, we first review some background knowledge about
classical non-abelian gauge theories. We then study a very special action in
three dimensions, the Chern-Simons theory which leads us to a gauge theo-
retical description of three dimensional gravity.

3.1 Basics of non-abelian gauge theory

A non-abelian gauge field may be described as a Lie algebra-valued one-form
A = AaµTadx

µ where the Ta are generators of the group G, i.e. they form a
basis of the Lie algebra g. As a connection, it transforms as

A→ g−1Ag + g−1dg (3.1)

under a gauge transformation g. The field strength of A is1

FA = dA+A ∧A = dA+ 1
2 [A,A] (3.4)

and it transforms homogeneously

FA → g−1FAg (3.5)

1The Lie bracket of two Lie algebra-valued forms X,Y is defined using the ordinary Lie
bracket on the generators and the wedge product on the form parts, i.e.

[X,Y ] = [Ta, Tb]X
a ∧ Y b (3.2)

It satisfies

[X(p), Y (q)] = X(p) ∧ Y (q) − (−1)pqY (q) ∧X(p) = (−1)pq+1[Y (q), X(p)] (3.3)

In the case of the 1-form A, we have [A,A] = 2A∧A and therefore the field strength can be
written in the two ways given in (3.4).

19
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as is shown by a straightforward calculation, using the fact that dg−1 =
−g−1dgg−1

FA → d(g−1Ag + g−1dg) +
(
g−1Ag + g−1dg

)
∧
(
g−1Ag + g−1dg

)
= dg−1 ∧Ag + g−1dAg − g−1A ∧ dg + dg−1 ∧ dg

+ g−1A ∧Ag + g−1dg ∧ g−1dg + g−1A ∧ dg + g−1dg ∧ g−1Ag
= g−1 (dA+A ∧A) g

= g−1FAg

(3.6)

The gauge connection defines a covariant derivative on every associated vector
bundle. In particular, for a Lie algebra valued p-form

V (p) =
1

p!
V a
µ1,...,µpTadx

µ1 ∧ ... ∧ dxµp (3.7)

which transforms in the adjoint representation of G,

V (p) → g−1V (p)g (3.8)

the covariant derivative may be defined as

DAV
(p) = dV (p) +

[
A, V (p)

]
= dV (p) +A ∧ V (p) − (−1)pV (p) ∧A

(3.9)

This formula is not applicable to the gauge connection, since it is in an affine
representation. But when acting on the field strength, the covariant derivative
gives zero

DAFA = dFA +A ∧ FA − FA ∧A
= dA ∧A−A ∧ dA

+A ∧ dA+A ∧A ∧A− dA ∧A−A ∧A ∧A
= 0

(3.10)

This fact is known as the Bianchi identity. It can also be written as D2
AA = 0,

where DAA is defined as

DAA = dA+A ∧A = FA (3.11)

3.2 The Chern-Simons action

In three spacetime dimensions, there is a particular action given for an arbi-
trary gauge group G by

SCS [A] =

∫
tr
(
A ∧ dA+ 2

3A ∧A ∧A
)

(3.12)
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It is gauge invariant provided that tr(XY ) = 〈X,Y 〉 is a scalar product2 on
the Lie algebra g, invariant under the adjoint action of G on g,

〈g−1Xg, g−1Y g〉 = 〈X,Y 〉 (3.13)

This invariance means that the scalar product is also invariant under the
adjoint action of g,

X → [X,Z] (3.14)

where Z is understood to be a function (0-form). The condition of invariance
reads

0 = δ〈X,Y 〉 = 〈δX, Y 〉+ 〈X, δY 〉
= 〈[X,Z] , Y 〉+ 〈X, [Y,Z]〉

(3.15)

On differential forms, the scalar product is defined as

〈X,Y 〉 = Xa ∧ Y b〈Ta, Tb〉 (3.16)

and it inherits the graded commutativity from the wedge product,

〈X(p), Y (q)〉 = (−1)pq〈Y (q), X(p)〉 (3.17)

Using this rule and equation (3.3), the adjoint-invariance from (3.15) can be
generalized to a prescription for shifting around the Lie brackets inside the
scalar product. In the case of forms of degrees p, q, r, it reads

〈[X(p), Y (q)], Z(r)〉 = 〈X(p), [Y (q), Z(r)]〉 (3.18)

which is easy to memorize. To verify that SCS is gauge invariant, we use
the adjoint invariance from (3.13). We then split the integrand of the Chern-
Simons action a bit differently

〈A, dA〉+ 1
3〈A, [A,A]〉 = 〈A,FA〉 − 1

6〈A, [A,A]〉 (3.19)

and calculate the first term

〈A,FA〉 → 〈g−1Ag + g−1dg, g−1FAg〉
= 〈A,FA〉+ 〈dgg−1, FA〉

(3.20)

and the second one

〈A, [A,A]〉 → 〈A, [A,A]〉+ 〈dgg−1, [A,A]〉+ 2〈A, [A, dgg−1]〉
+ 2〈dgg−1, [A, dgg−1]〉+ 〈A, [dgg−1, dgg−1]〉
+ 〈dgg−1, [dgg−1, dgg−1]〉

(3.21)

2The symbol tr is reminiscent of the Killing form, which exists and is invariant for any
Lie algebra, but only non-degenerate for the semi-simple ones. We shall consider the most
general invariant non-degenerate bilinear form.
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Together, they add up to

〈A, dA〉+ 1
3〈A, [A,A]〉 → 〈A, dA〉+ 1

3〈A, [A,A]〉
− 1

3〈dgg
−1, dgg−1 ∧ dgg−1〉+ d〈A, dgg−1〉

(3.22)

This means that the Chern-Simons action is gauge invariant up to a topological
and a surface term

SCS [A]→ SCS [A]− 1

3

∫
tr(g−1dg)3 +

∮
tr(A ∧ dgg−1) (3.23)

Field equations

The field equations of Chern-Simons theory turn out to be of a very simple
form. Let us calculate them. The first term in the variation is

δ 〈A, dA〉 = 〈δA, dA〉+ 〈A, dδA〉
= 2〈δA, dA〉+ d〈δA,A〉

(3.24)

where partial integration and the graded symmetry of the scalar product were
used in the second step. By making use of the adjoint invariance, we find that
the second term has the form

δ 〈A,A ∧A〉 = 〈δA,A ∧A〉+ 〈A, δA ∧A〉+ 〈A,A ∧ δA〉
= 〈δA,A ∧A〉+ 〈A, [A, δA]〉
= 3〈δA,A ∧A〉

(3.25)

The variation of the action thus reads

δSCS = 2

∫
〈δA, FA〉+

∮
〈δA,A〉 (3.26)

The boundary term has to vanish and the resulting field equations are

FA = 0 (3.27)

provided that the scalar product is non-degenerate. This means that classical
solutions of Chern-Simons theory are the flat G-connections. This also means
that whenever the manifold we are working on is trivial enough, every solution
is pure gauge, i.e. a gauge transform of the trivial solution A = 0,

FA = 0 ⇒ A = g−1dg (3.28)

We shall return to this peculiar feature in due time. For the moment, let us
see how Chern-Simons theory leads to three dimensional gravity.



3.3. CHERN-SIMONS FORMULATION OF 3D GRAVITY 23

3.3 Chern-Simons formulation of 3d gravity

In this section, we want to formulate 2+1-dimensional gravity with vanish-
ing cosmological constant as a Chern-Simons gauge theory. This construction
goes back to Witten [9]. What is the right gauge group? In the Palatini
formulation of GR, we had the spin connection ω and the triad e as our fun-
damental variables. In dimension three, each of them has three independent
components, and we know that ω has values in the Lie algebra of the Lorentz
group H = SO(2, 1). This suggests to use the group G = ISO(2, 1) and
parametrize the gauge field as

A = ω + e = ωiJi + eiPi (3.29)

where Pi are the translations and Ji contain the two Lorentz boosts and one
spatial rotation. The field ωi is but a different parametrization of the spin
connection degrees of freedom, namely

ωi = 1
2ε
ijkωjk (3.30)

The generators satisfy the commutation relations

[Ji, Jj ] = εijkJ
k

[Ji, Pj ] = εijkP
k

[Pi, Pj ] = 0

(3.31)

where indices are raised and lowered with the metric η = diag (−1, 1, 1) and
we choose ε012 = 1. From these relations, one can calculate the field strength

FA = dA+ 1
2 [A,A]

=
(
dω + 1

2 [ω, ω]
)

+ (de+ [ω, e])

= Ω + T

(3.32)

where

Ω = ΩiJi =
(
dωi + 1

2ε
i
jkω

j ∧ ωk
)
Ji (3.33)

T = T iPi =
(
dei + εijkω

j ∧ ek
)
Pi (3.34)

It can be guessed that these forms are related to the curvature and torsion.
Indeed, if equation (3.30) is inverted, it reads

ωij = −εijkωk (3.35)

and if this is injected into equation (2.77), the curvature form is expressed as

Ωi
j = dωij + ωik ∧ ωkj

= −εijkdωk + εiklε
k
jmω

l ∧ ωm

= −εijkdωk + ωi ∧ ωj

(3.36)
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on the other hand, from equation (3.33) one has

−εijkΩk = −εijkdωk − 1
2ε
i
jkε

klmωl ∧ ωm
= −εijkdωk + ωi ∧ ωj

(3.37)

Therefore, Ωi and the curvature form have the same relationship as ωi and
the spin connection, namely

Ωi
j = −εijkΩk ⇐⇒ Ωi = 1

2ε
ijkΩjk (3.38)

Moreover, the T part in FA looks like and turns out to be the torsion two-form
as defined in equation (2.78)

T i = dei + εijkω
j ∧ ek

= dei + 1
2ε
i
jkε

j
lmω

lm ∧ ek

= dei + ωik ∧ ek
(3.39)

The whole theory does not make any sense unless there is an invariant non-
degenerate bilinear form on the Lie algebra of ISO(2, 1). It can be shown3

that
〈Ji, Pj〉 = ηij , 〈Ji, Jj〉 = 〈Pi, Pj〉 = 0 (3.40)

solves (3.15) and is non-singular. Therefore when we plug this scalar product
into the action, the field equations read FA = 0 or, equivalently

Ω = 0 (3.41)

T = 0 (3.42)

These are the same equations as those we get from the Palatini action. The
field equation would have been identical had we used a different scalar product,
and we will see in the next section that there are more scalar products to be
chosen. But when the one from equation (3.40) is used, the Chern-Simons
action takes a special form. Let’s see what it looks like. The first term
contributes

〈A, dA〉 = 〈e, dω〉+ 〈ω, de〉
= 2〈e, dω〉 − d〈ω, e〉
= 2ei ∧ dωi − d(ωi ∧ ei)

(3.43)

while the second one adds the following piece

1
3〈A, [A,A]〉 = 1

3〈e, [ω, ω]〉+ 1
3〈ω, [ω, e]〉+ 1

3〈ω, [e, ω]〉
= 〈e, [ω, ω]〉

= ei ∧
(
εijkω

j ∧ ωk
) (3.44)

3In the next section we will give a general argument for this.
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Λ < 0 Λ = 0 Λ > 0

Riemannian
EAdS

SO(3, 1)
/
SO(3)

Euclidean
ISO(3)

/
SO(3)

EAdS
SO(4)

/
SO(3)

Lorentzian
AdS

SO(2, 2)
/
SO(2, 1)

Minkowski
ISO(2, 1)

/
SO(2, 1)

dS
SO(3, 1)

/
SO(2, 1)

Table 3.1: Homogeneous spacetime models in dimension three

Together, they add up to the Palatini action modulo a boundary term

SCS [e+ ω] +

∮
ωi ∧ ei = 2

∫
ei ∧ Ωi

=

∫
εijkΩ

ij ∧ ek = SPal [e, ω]

(3.45)

3.4 Homogeneous spaces

We would like to generalize the Chern-Simons formulation of GR also to cases
with non-zero cosmological constant, with either Riemannian (positive defi-
nite) or Lorentzian signature. All of the six models are summarized in table
3.4. Each of them is a homogeneous space

M = G/
H (3.46)

with a symmetry group G acting transitively on M and the stabilizer subgroup
of a point, denoted by H. The general idea is to use a connection valued in
the Lie algebra g of G, where the part in the subalgebra h ⊂ g will be the
spin connection and the part in g \ h will be interpreted as the vielbein. The
splitting will thus look essentially the same as before

A = ω + 1
l e (3.47)

where the only difference to the previous discussion is the length scale l that is
introduced (and was set to 1 up to now). We already have the flat Lorentzian
model (Minkowski space), and the corresponding Riemannian model is com-
pletely analogous except for some sign changes. In this section, we will cover
all the six models at the same time. However, special care has to be taken
regarding the scalar products on the Lie algebras.

There are some definitions to be done. Let k be the sign of the cosmological
constant Λ. For the cases with k 6= 0, we fix the metric which is invariant
under G to be

ηab =


η′

1
1

k

 (3.48)
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where the indices a, b, ... range from 1 to 4 in the Riemannian models and
from 0 to 3 in the Lorentzian ones. The upper 3 × 3 block denoted by η′ij
is invariant under H and determines the signature of the space, with η′ = 1
for the Riemannian and η′ = −1 for the Lorentzian cases. Indices i, j, ... are
meant to go from 1 to 3 in the Riemannian cases and from 0 to 2 in the
Lorentzian ones. Please note the way minus signs of the metric are chosen.
As an example, consider the case when G = SO(3, 1). For the Riemannian
anti-de Sitter (or hyperbolic) model the metric reads ηab = diag(1, 1, 1,−1)
and for the Lorentzian de Sitter model ηab = diag(−1, 1, 1, 1). In any case,
the determinant of the full metric is

η = η′k (3.49)

and we use this parameter also for when k = 0 (it is zero then), even if we
don’t have an ambient metric but only the Riemannian or Lorentzian 3-metric
η′ij = diag(η′, 1, 1) in those cases. This parameter allows us to choose a basis4

for which we have

[Ji, Jj ] = εijkJ
k

[Ji, Pj ] = εijkP
k

[Pi, Pj ] = ηεijkJ
k

(3.50)

where indices are raised and lowered by η′ij and ε123 = ε012 = 1. This and the
following holds for all six models to be studied. In the field strength,

FA = dA+ 1
2 [A,A]

=
(
dω + 1

2 [ω, ω] + 1
2 l
−2 [e, e]

)
+ 1

l (de+ [ω, e])

= F̂ + 1
l T

(3.51)

the non-vanishing commutator of the transvections is responsible for a new
term in the h-valued part F̂ , sometimes called the corrected curvature, which
reads

F̂ i = dωi + 1
2ε
ijkωj ∧ ωk + 1

2ηl
−2εijkej ∧ ek

= Ωi + 1
2ηl
−2εijkej ∧ ek

(3.52)

The other piece is the torsion, as before given by

T i = dei + εijkω
j ∧ ek (3.53)

By using the relation ωij = −εijkωk one finds

F̂ i = −1
2η
′εijk

(
Ωjk − kl−2ej ∧ ek

)
(3.54)

T i = dei + ωij ∧ ej (3.55)

4See appendix A.1 for reference.
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Bilinear forms

At this point we must find an invariant scalar product. In terms of the gen-
erators, there are three equations to be solved

〈[Ji, Jk] , Jl〉 = 〈Ji, [Jk, Jl]〉 (3.56)

〈[Ji, Jk] , Pl〉 = 〈Ji, [Jk, Pl]〉 (3.57)

〈[Ji, Pk] , Pl〉 = 〈Ji, [Pk, Pl]〉 (3.58)

By using the commutation relations (3.50), one can write the first as

εikm〈Jm, Jl〉 = εklm〈Ji, Jm〉 (3.59)

After multiplying by εikn and contracting the indices, we get

2〈Jn, Jl〉 = −〈Jl, Jn〉+ ηnl〈Ji, J i〉 (3.60)

The same manipulations, when applied to the other two equations, yield

2〈Jn, Pl〉 = −〈Jl, Pn〉+ ηnl〈Ji, P i〉 (3.61)

2〈Pn, Pl〉 = −η〈Jl, Jn〉+ ηηnl〈Ji, J i〉 (3.62)

Equation (3.60) means that the scalar product of two rotations is proportional
to the metric

3〈Ji, Jk〉 = ηik〈Jl, J l〉 ⇒ 〈Ji, Jk〉 = αηik (3.63)

where α is an arbitrary real constant. Similarly, the second equation implies

〈Ji, Pk〉 = βηik (3.64)

with another independent constant β. The remaining scalar product is deter-
mined by these choices

2〈Pi, Pk〉 = −ηαηik + ηηikαη
l
l

= 2αηηik

⇒ 〈Pi, Pk〉 = αηηik

(3.65)

Therefore for any choice of α and β, the equations

〈Ji, Jk〉 = αηik, 〈Ji, Pj〉 = βηij , 〈Pi, Pj〉 = αηηik (3.66)

determine an invariant scalar product on any of the Lie algebras so(4), so(2, 2),
so(3, 1) and iso(3), iso(2, 1). It is non-degenerate if the determinant is non-zero

D(α, β) = η′2
(
ηα2 − β2

)3 6= 0 (3.67)

For η = 0, corresponding to the flat models, the non-vanishing determinant
requires β 6= 0, not putting any constraint on α. Thus we find, besides the
scalar product we used in the previous section (which corresponds to α = 0
and β = 1), a one-parameter family of scalar products5. The same is true
if η 6= 0. When η < 1 there is no restriction whatsoever on the parameters,
while if η > 1 the scalar product is degenerate for β = ±α.

5The second parameter can be thought of as an overall normalization.
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Actions

Given any non-degenerate invariant scalar product, the field equations con-
tained in FA = 0 are again equivalent to the Einstein equations with vanishing
torsion

F̂ i = 0 ⇒ Ωij = kl−2ei ∧ ej (3.68)

T i = dei + ωij ∧ ej = 0 (3.69)

But the form of the action depends on the particular scalar product used.
Indeed, if we split the most general bilinear form from equation (3.66)

〈 , 〉 = α〈 , 〉1 + β〈 , 〉2 (3.70)

such that the two parts are obviously given by

〈Ji, Jk〉1 = ηik, 〈Ji, Pj〉1 = 0, 〈Pi, Pj〉1 = ηηik (3.71)

〈Ji, Jk〉2 = 0, 〈Ji, Pj〉2 = ηij , 〈Pi, Pj〉2 = 0 (3.72)

the Chern-Simons action also splits into two parts

S
(α,β)
CS = αS

(1)
CS + βS

(2)
CS (3.73)

The integrand of the first action reads

〈A, dA〉1 + 1
3〈A, [A,A]〉1 = l−2〈e, de〉1 + 2

3 l
−2〈e, [ω, e]〉1 + 1

3 l
−2〈ω, [e, e]〉1

+ 〈ω, dω〉1 + 1
3〈ω, [ω, ω]〉1

= l−2〈e, T 〉1 + 〈ω, dω〉1 + 1
3〈ω, [ω, ω]〉1

(3.74)

and thus the action pertaining to the first bilinear form consists of a Chern-
Simons term in ω and a torsional term

S
(1)
CS [A] = S

(1)
CS [ω] + l−2

∫
〈e, T 〉1 (3.75)

The action S
(2)
CS contains the following pieces

〈A, dA〉2 + 1
3〈A, [A,A]〉2 = 1

l 〈e, dω〉2 + 1
l 〈ω, de〉2

+ 1
3 l
−3〈e, [e, e]〉2 + 1

l 〈e, [ω, ω]〉2
= 2

l 〈e,Ω〉2 + 1
3 l
−3〈e, [e, e]〉2 − 1

l d〈ω, e〉2

(3.76)

and this gives rise to the Palatini action with cosmological constant Λ = kl−2

S
(2)
CS [A] =

1

l

∫ (
2ei ∧ Ωi + 1

3ηl
−2εijke

ijk
)

= −η
′

l

∫
εijk

(
Ωij ∧ ek − 1

3kl
−2eijk

)
= −η

′

l
SPal[e, ω]

(3.77)
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where the occurring boundary term has been left away. By the way, this
illuminates why β cannot be zero in the flat models. If this were the case,

the action would only consist of the term S
(1)
CS [ω] (the second term in the

first action would be absent because [p, p] = 0), which contains only the spin
connection. Thus, the field equation would not involve the triad.

There is another interesting property of the Lie algebras we are dealing
with. The involution map

i : g→ g, A 7→ Ā (3.78)

defined by
Ji 7→ Ji, Pi 7→ −Pi (3.79)

leaves invariant the commutation relations given in (3.50). Moreover, the
scalar product 〈 , 〉1 does not change under this map, while 〈 , 〉2 changes
sign. This means that

S
(α,β)
CS [Ā] = αS

(1)
CS [A]− βS(2)

CS [A] (3.80)

This behavior under a change of sign of e is also obvious by looking at how
many powers of e are occurring in the different terms. The first action has
only even powers while the second one involves first and third powers of e.
The Palatini action can therefore be extracted from the antisymmetric part
with respect to the involution whenever β 6= 0, i.e.

SPal[e, ω] = −η
′l

2β

(
S
(α,β)
CS [A]− S(α,β)

CS [Ā]
)

(3.81)

3.5 Gauge transformations

It is remarkable that the Palatini action of three dimensional gravity can
be derived from a gauge theory. But by combining the vielbein and the spin
connection into one single gauge field, we have significantly enlarged the group
of symmetries. While the subgroup of local frame rotations is still there,
comprising the three Ji out of six generators, there are three transvections or
translations that come into play. It has already been remarked in one of the
previous sections that any solution of the field equations

FA = 0 (3.82)

is a flat connection, and on a manifold which is of sufficiently trivial topology6,
it can related to the trivial solution A = 0 by a gauge transformation, or put
differently

A = g−1dg (3.83)

6The exact condition is that the fundamental group π1(M) be trivial. This applies to
all of our homogeneous spaces, except for AdS space, which is endued with closed timelike
curves and has topology R2 × S1.
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for some g ∈ G. This means that we cannot restrict our vielbeins to be non-
degenerate. While this condition is preserved by the local frame rotations and
therefore constitutes a sensible restriction for conventional gravity, it is not a
natural thing to do in a gauge theory.

Let us first consider small gauge transformations, that is we pick g = 1+u,
where

u = τ + 1
l ρ = τ iJi + 1

l ρ
iPi (3.84)

Under the transformation A→ g−1Ag+g−1dg, the variation of the gauge field
can be expressed as

δA = du+ [A, u] = DAu (3.85)

and using the commutation relations, we can derive

δe = dρ+ [e, τ ] + [ω, ρ] (3.86)

δω = dτ + [e, ρ] + [ω, τ ] (3.87)

or, in components

δei = dρi + εijkejτk + εijkωjρk (3.88)

δωi = dτ i + ηεijkejρk + εijkωjτk (3.89)

Thus, if ρ = 0, using the definition τ ij = −εijkτk, we find

δei = −τ ijej (3.90)

δωij = −εijkδωk = dτ ij + ωikτ
k
j − τ ikωkj (3.91)

which corresponds to a local frame rotation ei → Λije
j with Λij = δij − τ ij .

Thus, the subgroupH generated by the Ji is the group of local frame rotations,
as expected.

Extended gauge transformations

In contrast to small gauge transformations, for extended ones the variations of
e and ω are in general difficult to calculate. There are however some general
results that can be derived. Let g = exp(u), where u = τ+ 1

l ρ is a Lie algebra-
valued parameter function as before (but now not necessarily small). Then,
the transformation of A, which can be split into three parts

A = ω + 1
l e → g−1ωg + 1

l g
−1eg + g−1dg (3.92)

can be given in terms of Hadamard’s Lemma. The first two terms read

g−1ωg = e−uωeu =

∞∑
m=0

1

m!
[−u, ω]m (3.93)

g−1eg = e−ueeu =
∞∑
m=0

1

m!
[−u, e]m (3.94)
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where [ , ]m is defined recursively as

[X,Y ]m =
[
X, [X,Y ]m−1

]
, [X,Y ]0 = Y (3.95)

The term g−1dg is a bit more tricky. One can use the integral representation,
and then again Hadamard’s Lemma, to derive

g−1dg =

∫ 1

0
dξ e−ξudu eξu

=

∫ 1

0
dξ

∞∑
m=0

1

m!
[−ξu, du]m

=
∞∑
m=0

1

m!
[−u, du]m

∫ 1

0
dξ ξm

=

∞∑
m=0

1

(m+ 1)!
[−u, du]m

(3.96)

Applying these formulæ can produce very complicated expressions. One
simple result however can be derived very easily, namely the fact that in
the case where η = 0 (Poincaré gauge theory), translations leave the spin
connection invariant. This is derived as follows (we set l = 1): Since for
translations τ = 0 and [p, p] = 0, the series given in (3.93), (3.94) and (3.96)
each only have a finite number of terms

[−ρ, e]0 = e, [−ρ, e]1 = [−ρ, e] = 0 ⇒ [−ρ, e]m = 0, m ≥ 1

[−ρ, ω]0 = ω, [−ρ, ω]1 = [−ρ, ω] ∈ p ⇒ [−ρ, ω]m = 0, m ≥ 2

[−ρ, dρ]0 = dρ, [−ρ, dρ]1 = [−ρ, dρ] = 0 ⇒ [−ρ, dρ]m = 0, m ≥ 1

(3.97)

and hence
g−1eg = e, g−1ωg = ω + [ω, ρ] , g−1dg = dρ (3.98)

By rearranging the h and p components, we can read off that

e→ e+Dωρ

ω → ω
(3.99)

This is of course true for infinitesimal translations, but it holds also for arbi-
trary parameters.

Gauge transformations and diffeomorphisms

On-shell, a large class of gauge transformations can be interpreted as small
diffeomorphisms. Under a diffeomorphism generated by the vector field V ,
the variation of the gauge field is given by its Lie derivative

δA = LVA = iV dA+ diVA (3.100)
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By using the field strength FA = dA+ 1
2 [A,A], one can establish the identity

δA = iV dA+ diVA

= iV FA − 1
2 iV [A,A] + diVA

= iV FA + diVA+ [A, iVA]

= iV FA +DAiVA

(3.101)

On-shell, where FA = 0, this diffeomorphism is obtained from the gauge trans-
formation u = iVA. This means that whenever we have a field configuration
which has a non-degenerate vielbein, this is certainly preserved by the diffeo-
morphism, and hence by any gauge transformation which is of the form given
above.

3.6 Gauge transformations in the SO(4) model

To gain a deeper understanding of the relevance of gauge transformations in
Chern-Simons gravity, we look at the Riemannian model with positive cosmo-
logical constant, which is nothing but the three-sphere

SO(4)
/
SO(3)

∼= S3 (3.102)

Calculations are simpler than in the other models for a number of reasons.
First of all, we can exploit the isomorphisms

SO(4) ∼= SU(2)× SU(2)/Z2 (3.103)

and

S3 ∼= SU(2) (3.104)

to think of gauge transformations as maps from the sphere onto itself. Sec-
ondly, using some of the simple coordinate patches which are known on the
sphere, quantities like the vielbeins, metrics and winding numbers resulting
from these maps are comparatively easy to compute.

Preparatory calculations

Let us make things more specific. First, we define the covering map

SU(2)× SU(2)→ SO(4)

(g, h) 7→ R(g, h)
(3.105)

If the two SU(2) transformations are parametrized by

g = g412 + igiσi, h = h412 + ihiσi (3.106)
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with δabgagb = δabhahb = 1 and σi the three Pauli matrices, then the corre-
sponding element of SO(4) is given by7

R(g, h) =
(
h414 + hiJ

+
i

) (
g414 + giJ

−
i

)
= ĥg̃ (3.107)

where the J±i are simply another set of generators related to the previous ones
by

J±i = Ji ± Pi (3.108)

They express the Lie algebra isomorphism so(4) ∼= su(2)⊕ su(2) and therefore
satisfy the commutation relations[

J±i , J
±
k

]
= 2εiklJ

±
l[

J+
i , J

−
i

]
= 0

(3.109)

For the practical calculations we will be doing shortly, the following results
are also useful

J±i J
±
k = −δik14 + εiklJ

±
l

J±i J
±
k J
±
l = −εikl14 − δikJ±l − δklJ

±
i + δilJ

±
k

(3.110)

and they are the same as in SU(2). These relations imply, among other things,
that the two maps SU(2)→ SO(4) given by

g 7→ R(g,12) = g̃, h 7→ R(12, h) = ĥ (3.111)

are representations of SU(2), such that g̃1g2 = g̃1g̃2 and so forth.
The gauge field can be split along the two commuting directions

A = A+ +A− = A+iJ+
i +A−iJ−i (3.112)

In this splitting the field strength is linear

FA = FA+ + FA− (3.113)

and the relation to the vielbein and spin connection (we set l = 1) is given by

ei = A+
i −A

−
i

ωi = A+
i +A−i

(3.114)

Now suppose that the gauge field is given by a pure gauge transformation, i.e.
A = R(g, h)−1dR(g, h). Since the two factors in R commute, things simplify
considerably

R(g, h)−1dR(g, h) = (ĥg̃)−1d(ĥg̃)

= g̃−1ĥ−1
(
d(ĥ)g̃ + ĥdg̃

)
= ĥ−1dĥ+ g̃−1dg̃

(3.115)

7Please have a look at appendix A.2 for a detailed derivation of this result.
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meaning that the two components of the gauge field are given by the individual
parts of the gauge transformation as

A+ = ĥ−1dĥ, A− = g̃−1dg̃ (3.116)

If this field is subjected to another gauge transformation,

A→ R(r, s)−1AR(r, s) +R(r, s)−1dR(r, s) (3.117)

the result is again a pure gauge, where the relevant transformation is given
by right multiplication

A′+ = (ĥs)−1d(ĥs), A′− = (ĝr)−1d(ĝr) (3.118)

One can calculate the components of (3.116) in detail using the relations
(3.110), e.g. for the A+ part we get

A+ =
(
h414 − hiJ+

i

) (
dh414 + dhkJ

+
k

)
= h4dh414 + (h4dhi − hidh4) J+

i − hidhkJ
+
i J

+
k

= (δabhadhb)14 + (h4dhi − hidh4) J+
i − εiklhidhkJ

+
l

= (h4dhi − hidh4 − εiklhkdhl) J+
i

(3.119)

In the last step we used δabhahb = 1. The calculation of the A− part is
completely analogous. Finally, the triad reads

ei = h4dhi − g4dgi + gidg4 − hidh4 + εikl(gkdgl − hkdhl) (3.120)

From this, the metric can be calculated as ds2 = eiei, but the formula does
not look very inspiring. However, if one of the factors is trivial, e.g. g = 12,
the metric takes the simple form

ds2 = dh21 + dh22 + dh23 + dh24 (3.121)

If h is the identity map,

h : S3 → SU(2) ∼= S3

X 7→ X
(3.122)

(not to be confused with h = 12, which we call a trivial gauge transformation),
and X = (x1, x2, x3, x4) are coordinates from the embedding of S3 in R4, then
the metric is just the restriction to S3 of the Euclidean metric on R4

ds2 = dx21 + dx22 + dx23 + dx24 (3.123)
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Gauge transforming the vacuum

It is clear that starting from the field configuration A = 0 (which we call the
gauge theory vacuum), one can produce any gauge field which solves FA = 0
by a gauge transformation. In most cases, the vielbein component will be
degenerate. If it isn’t, the vielbein and the spin connection together define a
geometry which locally looks like S3, but may have a different global structure.
Moreover, this geometry is invariant under the subgroup H of local frame
rotations.

Let us explore this terrain a bit. One class of gauge transformations is
given by

g = cos(nψ)12 + i sin(nψ) [cos(θ)σ1 + sin(θ) (cos(φ)σ2 + sin(φ)σ3)]

h = cos(mψ)12 + i sin(mψ) [cos(θ)σ1 + sin(θ) (cos(φ)σ2 + sin(φ)σ3)]
(3.124)

where ψ, θ, φ are hyperspherical coordinates on S3, having the ranges

0 ≤ ψ, θ ≤ π, 0 ≤ φ ≤ 2π (3.125)

and m,n ∈ Z. The maps g and h wrap around SU(2) a certain number of
times. Indeed, the SU(2) winding numbers turn out to be

W (g) =
1

24π2

∫
S3

tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
= n

W (h) =
1

24π2

∫
S3

tr
(
h−1dh ∧ h−1dh ∧ h−1dh

)
= m

(3.126)

If we cook up the SO(4) gauge transformation R(g, h), it can also be assigned
a winding number

W (R) =
−1

48π2

∫
S3

tr
(
R−1dR ∧R−1dR ∧R−1dR

)
= n+m (3.127)

and the result n + m follows from the fact that R(g, h) splits according to
equation (3.115). The different normalizations in front of the winding number
integrals are due to the relative factors of the trace operators in su(2) and
s0(4) respectively.

Let us proceed to the calculation of the triad. The components gi and hi
can be read off directly from (3.124), and the vielbein can be calculated from
equation (3.120),

e1 = (m− n) cos θdψ + 1
2 sin θ (sin(2nψ)− sin(2mψ)) dθ

− 1
2 sin2 θ (cos(2nψ)− cos(2mψ)) dφ

e2 = ...

e3 = ...

(3.128)
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which results in very long and uninteresting expressions. On the other hand,
the metric looks very nice

ds2 = (m− n)2dψ2 + sin2 (|m− n|ψ)
(
dθ2 + sin2 θdφ2

)
(3.129)

and for m = 1 and n = 0 (or vice versa) reproduces the 3-sphere metric in
spherical coordinates. For m = n, this metric is zero and thus completely
degenerate while the winding number of the gauge transformation is 2n. If
m = −n, the winding number is zero, but the metric is non-degenerate if
n 6= 0.

By applying gauge transformations, one can change between these different
geometries. On the other hand, two gauge transformations having distinct
winding numbers are in a different homotopy class and cannot be continuously
deformed into each other. Therefore they can be thought to represent different
configurations. Please have a look at [5] for further considerations on the
nature of gauge transformations.

Rebuilding and transforming the Hopf metric

Another coordinate patch which covers all of S3 (except for the poles) is given
by the Euler angles

0 ≤ ψ ≤ 2π, 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π (3.130)

and we can define a gauge field by picking

h = eiφσ3eiθσ2eiψσ3 , g = 12 (3.131)

This is of course just the identity map expressed in Euler coordinates. The
coefficients of the representation h = h412 + ihiσi are

h1 = sin(θ) sin(φ− ψ)

h2 = sin(θ) cos(φ− ψ)

h3 = cos(θ) sin(φ+ ψ)

h4 = sin(θ) cos(φ+ ψ)

(3.132)

and from these and (3.120), one can directly compute the triad

e1 = − sin(2θ) cos(2φ)dψ + sin(2φ)dθ

e2 = sin(2θ) sin(2φ)dψ + cos(2φ)dθ

e3 = cos(θ)dψ + dφ

(3.133)

and the metric

ds2 = dψ2 + dθ2 + dφ2 + 2 cos(2θ)dψdφ (3.134)
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This constitutes a perfectly sound geometry8, apart from the usual coordinate
singularities. The determinant of the dreibein is det e = − sin(2θ), so it is
invertible on the whole sphere except for the poles (θ = 0 or θ = π/2).

In this setting, it is very obvious how to make the geometry degenerate.
Since according to (3.117) gauge transformations are composed by right mul-
tiplication, we can immediately list some transformations which remove one
of the coordinates from the metric and thus make it degenerate in one or more
dimensions. Let us list some examples

s = e−iψσ3  ds2 = dθ2 + dφ2

s = e−iψσ3e−iθσ2eiψσ3  ds2 = (dψ + dφ)2

s = h−1eiθσ2eiψσ3  ds2 = dψ2 + dθ2

(3.136)

8 In fact, the metric can also be written as

ds2 = (dθ2 + sin2 θdφ2) + (dψ +B)2 (3.135)

where B = cos θdφ is a U(1) - connection. This way of writing the 3-sphere metric exhibits
the fact that S3 is a principal S1-bundle over S2, called the Hopf fibration. The metric is
therefore referred to as the Hopf metric, whose first term is the metric on the base space
S2 while the presence of the ’gauge field’ B in the second term is due to the non-trivial
structure group.





4 MacDowell-Mansouri gravity

We proceed in the same spirit as in dimension three to set up a gauge theory
of gravity also in four spacetime dimensions, which is a more realistic model
of the universe we live in. In fact, gravity in dimension four is much more
complicated. Therefore the homogeneous models are only an approximation to
our spacetime. The connection describing the geometry is no longer necessarily
flat.

The biggest problem however is finding an action which serves the same
purpose as the Chern-Simons action did in three dimensions, namely reduce to
the Palatini action in a suitable parametrization. In this chapter, one attempt
at this will be presented, namely the MacDowell-Mansouri approach.

4.1 Kinematics

Again, we want to study spacetimes with positive or negative cosmological
constant and of Riemannian and Lorentzian signature. Thus, there are again
six distinct classes of models, summarized in table 4.1, and each of them will
have a Cartan geometry based on one of the six homogeneous spaces. So
most of the kinematical setting is built in exactly the same way as in three
dimensions.

The ambient metric is chosen to be

ηIJ = diag(η′, 1, 1, 1, k) (4.1)

where k is the sign of the cosmological constant Λ and η′ is the determinant
of the upper 4× 4 metric ηab. Upper-case indices I, J, .. range from 0 to 4 and
a, b, ... from 0 to 3 (we do not distinguish between Riemannian and Lorentzian
indices for convenience). So the Lie subalgebra h is so(4) for the Riemannian
spaces and so(3, 1) for the Lorentzian ones. The gauge field is split according
to

A = ω + 1
l e (4.2)

Since the Lie algebra is now 10-dimensional, it is actually easier to work in
components instead of generators and commutation relations. The splitting
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Λ < 0 Λ = 0 Λ > 0

Riemannian
EAdS

SO(4, 1)
/
SO(4)

Euclidean
ISO(4)

/
SO(4)

EAdS
SO(5)

/
SO(4)

Lorentzian
AdS

SO(3, 2)
/
SO(3, 1)

Minkowski
ISO(3, 1)

/
SO(3, 1)

dS
SO(4, 1)

/
SO(3, 1)

Table 4.1: Homogeneous model spacetimes in dimension four

of the gauge field reads

AIJ

〈 Aab = ωab

Aa4 = 1
l e
a

(4.3)

and of course all diagonal components vanish. The spin connection ends up
in the upper left block of A, which corresponds to h as it should. Moreover,

A4
a = η44A4a = −η44Aa4 = −kl−1ea (4.4)

and from this, the components of the field strength can be calculated explicitly.
The h-valued part is once again given by the corrected curvature

F̂ ab = dAab +Aac ∧Acb +Aa4 ∧A4
b

= dωab + ωac ∧ ωcb − kl−2ea ∧ eb
= Ωa

b − kl−2ea ∧ eb

(4.5)

and the other piece by the torsion

F a4 = dAa4 +Aac ∧Ac4
= 1

l (dea + ωac ∧ ec)
= 1

l T
a

(4.6)

and F 4
a = −kl−1Ta, such that we can write

F = F̂ + 1
l T, F̂ = Ω− kl−2e2 (4.7)

as in the three dimensional case. Using the convention for gauge covariant
derivatives introduced in equation (3.9), we introduce Dω for the h-valued
parts of tensors and connections. The Bianchi identity for F then reduces to

DAF = 0 ⇒

〈 DωΩ = 0

DωT = D2
ωe = Ω ∧ e

(4.8)
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4.2 The MacDowell-Mansouri action

The approach of MacDowell and Mansouri [3] to write down an action for four
dimensional gravity was

SMM[A] =

∫
εabcdF̂

ab ∧ F̂ cd (4.9)

The first remark on this approach is that the action is not gauge invariant!
While it is invariant under the subgroup H, the full gauge group mixes the
hatted field strength with the torsion. It is however possible to set up a
gauge invariant theory which reduces to the MacDowell-Mansouri action via
a constraint, and this will be the topic of the next section. For now, let us
work in this ’broken phase’ and see what happens.

When the action is expressed in terms of the constituent fields

SMM =

∫
εabcdΩ

ab ∧ Ωcd + l−4
∫
εabcde

abcd

− 2kl−2
∫
εabcdΩ

ab ∧ ecd

= −4kl−2SPal +

∫
εabcdΩ

ab ∧ Ωcd

(4.10)

where

SPal = 1
2

∫
εabcd

(
Ωab ∧ ecd − 1

2kl
−2eabcd

)
(4.11)

The Ω2 term is topological because of the Bianchi identity DωΩ = 0

δ

∫
εabcdΩ

ab ∧ Ωcd = 2

∫
εabcdΩ

ab ∧ δΩcd

= 2

∫
εabcdΩ

ab ∧Dωδω
cd

= −2

∫
εabcd����DωΩab ∧ δωcd = 0

(4.12)

Thus, the MM action is equivalent to the Palatini action for the cases with
nonzero cosmological constant and is purely topological for k = 0.

4.3 The Stelle-West model

The MacDowell-Mansouri action is only invariant under the group H, and the
aim is to write down an action which is invariant under the full group G =
SO(5), SO(4, 1) or SO(3, 2) and have this symmetry spontaneously broken
by a field φ in the fundamental representation

φI → gIJφ
J (4.13)
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which satisfies the constraint ηIJφ
IφJ = k. This is achieved by choosing the

action

SSW =

∫
εIKLMNF

IK ∧ FLM ∧ φN + S
(1)
C (4.14)

where

S
(1)
C =

k

2

∫
σ
(
1− kηIJφIφJ

)
(4.15)

is a constraint action, with σ a Lagrange multiplier field (a volume form).
Variation with respect to this form imposes the constraint

δSSW
δσ

= 0 ⇒ ηIJφ
IφJ = k (4.16)

whereas the variation with respect to the scalar field φ yields

δSSW
δφI

= 0 ⇒ εIKLMNF
KL ∧ FMN = σηIJφ

J (4.17)

After multiplication by φI and rearrangement, this equation takes the form

σ = kεIKLMNF
KL ∧ FMN ∧ φI (4.18)

which means that the Lagrange multiplier field is fixed dynamically1. In a
gauge in which φI = δI4, we can choose εabcd4 = εabcd and the action reduces
to the MacDowell-Mansouri action

SSW →
∫
εabcdF

ab ∧ F cd = SMM (4.19)

Moreover, it follows from the Einstein equations that σ is proportional to the
Weyl tensor squared. In fact, towards the end of section 2.5 we derived2

Ωc = 3kl−2ec, R = 12kl−2 (4.20)

If this is substituted into the Weyl 2-form, given (in dimension four) by

W ab = Ωab − 1
2

(
ea ∧ Ωb − eb ∧ Ωa

)
+ 1

6Re
a ∧ eb (4.21)

it turns out that

W ab = Ωab − 3kl−2eab + 2kl−2eab

= Ωab − kl−2eab

= F̂ ab

(4.22)

1The field φ is not really dynamical, nor is σ, since the action lacks any derivative terms
involving those fields. Thus the construction remains somewhat artificial.

2This derivation only works for invertible vielbeins, because it is only in this case that
the dual operators ia exist. But the Weyl tensor is also constructed using contractions,
so in any case, the correspondence which we are after makes sense only if the vielbein is
non-singular.
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Thus, on-shell and if the vielbein is invertible, the corrected curvature equals
the Weyl 2-form, and therefore the Lagrange multiplier is given by

σ = kεabcdW
ab ∧W cd (4.23)

What is this fuss about the Weyl tensor? The important thing is that the
field equation from δφI does not contradict Einstein’s equations. In fact, this

happens if instead of S
(1)
C one uses

S
(m)
C =

k

2

∫
σ
(
1− kηIJφIφJ

)n
, m ≥ 2 (4.24)

as a constraint action. The variation of σ gives rise to the same constraint as
before, but the φ field equation now reads

mσ
(
1− kηIJφIφJ

)m−1
= kεIKLMNF

KL ∧ FMN ∧ φI (4.25)

Because of the constraint, the left-hand side vanishes on-shell (if m ≥ 2). In
the gauge we chose above and if the vielbein is invertible, we therefore get an
additional constraint on the Weyl tensor, namely

εabcdW
ab ∧W cd = 0 (4.26)

which is not required by Einstein’s equations.





A Appendices

A.1 Lie algebra conventions for Chern-Simons gravity

We give the conventions for the Lie algebras g = so(4), so(2, 2) and so(3, 1)
in detail. The generators Jab are chosen to be

(Jab)
c
d = ηadδ

c
b − ηbdδca (A.1)

such that they satisfy commutation relations

[Jab, Jcd] = ηacJbd − ηbcJad − ηadJbc + ηbdJac (A.2)

where ηab is the metric tensor preserved by the group. Please note that indices
a, b, c, ... range from 1 to 4 and Jab = −Jba, so we have six independent
generators. We can further define a Hodge star operator which acts as

Aab 7−→ ?Aab = 1
2ε
a
bc
dAcd (A.3)

Let’s act on one of the basis vectors Jab. We get

? (Jab)cd = 1
2εcdef (Jab)

ef = 1
2εabef

(
Jef
)
cd

?Jab = 1
2εabcdJ

cd
(A.4)

Moreover, the star operator squares to the determinant of the metric

?2 = η (A.5)

and it commutes with the adjoint action of the Lie algebra, as we can calculate
from the commutation relations1

? [Jab, ?Jcd] = ?12εcdef

[
Jab, J

ef
]

= ?12εcdef (ηeaJ
f
b − ...)

= 1
4εcdef ε

f
bgh η

e
aJ

gh − ...

= η(ηcbηdgηeh + ...)ηeaJ
gh

= −ηηbcJad + ...

= ?2 [Jab, Jcd]

(A.6)

1The ellipses indicate that there are other combinations of indices determined by the
symmetries of the left-hand side of the equation.
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and hence
? [X,Y ] = [X, ?Y ] = [?X, Y ] , X, Y ∈ g (A.7)

In terms of the vector basis

Ji = 1
2εijkJ

jk, Pi = ?Ji (A.8)

the commutation relations can be easily calculated using the Hodge operator.
One only needs to compute

[Ji, Jj ] = 1
4εiklεjmn

[
Jkl, Jmn

]
= 1

4εiklεjmn(ηkmJ ln − ...)
= εkliε

k
njJ

ln

= η′(ηlnηij − ηljηin)J ln

= η′Jij

= εijkJ
k

(A.9)

and the other commutators are given by

[Ji, Pj ] = [Ji, ?Jj ]

= ? [Ji, Jj ]

= εijkP
k

(A.10)

and

[Pi, Pj ] = [?Ji, ?Jj ]

= ? [?Ji, Jj ]

= ?2 [Ji, Jj ]

= ηεijkJ
k

(A.11)

A.2 SO(4) covering map

The vector space R4 is isomorphic to the space of quaternions, which can be
represented by 2× 2 complex matrices

R4 → H

xa 7→ x412 +XiTi = X
(A.12)

where Ti = iσj . The modulus of the four-vector in R4 is given by the deter-
minant of the quaternionic matrix

δabxaxb = detX (A.13)

The length of a four-vector is invariant under SO(4). Similarly, the deter-
minant is unchanged under X 7→ h†Xg, with g, h ∈ SU(2). The converse is
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also true, if X,X ′ ∈ H with detX = detX ′, then those two matrices can be
diagonalized by SU(2) matrices,

U †11XU12 = U †21X
′U22 = D (A.14)

and therefore there are g, h ∈ SU(2) such that X ′ = h†Xg. They are not
unique however, since −g,−h constitute another solution. This is of no par-
ticular importance, since we want to find a transformation R(g, h) such that
the diagram

H −−−−→ R4

h†()g

y yR(g,h)

H −−−−→ R4

(A.15)

commutes. Using the representation

g = g412 + giTi, h = h412 + hiTi (A.16)

and the relations

TiTk = −δik14 + εiklTl

TiTkTl = −εikl14 − δikTl − δklTi + δilTk
(A.17)

one can calculate

X ′ = h†Xg = x′412 + x′iTi (A.18)

and read off the coefficients of the SO(4) matrix R(g, h), defined by

x′a = Rabxb (A.19)

The result is

R44 = h4g4 + higi

Ri4 = h4gi − g4hi + εiklhkgl

R4i = −h4gi + g4hi + εiklhkgl

Rij = (h4g4 − hkgk)δij + higj + hjgi − εijk(h4gk + hkg4)

(A.20)

If R(g, h) is supposed to be a product of matrices ĥg̃ where each factor only de-
pends on its corresponding SU(2) counterpart, the components of ĥ, g̃ can be
guessed from the components of R. Indeed, the first line of (A.20) determines
(up to signs) the last coloumn of g̃ and the last row of ĥ,

R =


· · · ·
· · · ·
· · · ·
h1 h2 h3 h4



· · · g1
· · · g2
· · · g3
· · · g4

 (A.21)
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From here on we are basically solving some kind of Sudoku. From the second
and third lines in (A.20) we can deduce all entries

R =


h4 −h3 h2 −h1
h3 h4 −h1 −h2
−h2 h1 h4 −h3
h1 h2 h3 h4



g4 −g3 g2 g1
g3 g4 −g1 g2
−g2 g1 g4 g3
−g1 −g2 −g3 g4

 (A.22)

and the last equation then is automatically solved, whereas any other sign
choice in (A.21) would have been inconsistent.
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